Skip to main content

Advertisement

Log in

Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrothermal liquefaction (HTL) of seven algae was conducted at both 280 and 350 °C with a reaction time of 30 min and a mass ratio of 1/4 of algae to water to evaluate the utilization potential of bio-oil production and nutrient recycling in the aqueous by-product and solid residue particles. Chlorella and Nannochloropsis sp. exhibited the highest bio-oil yields at 280 °C (36.5% from Nannochloropsis sp.) and 350 °C (38.1% from Chlorella). Additionally, temperature had little effect on the energy recovery from Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena. The carbohydrates and lipids in the algae were primarily related to monoaromatic and single-ring heterocyclic compound generation in bio-oil. In addition, carbohydrates and proteins significantly affected oxygenated compound production. The sizable total carbon, ammonia nitrogen, total nitrogen and phosphate contents in the aqueous byproducts showed great potential as nutrient sources for algal cultivation and the production of value-added chemicals through recycling. Higher temperatures increased the percentage of ammonia nitrogen in the total nitrogen and reduced the phosphate concentration in the aqueous by-product. According to potential evaluation factors, Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena totally showed higher potential in terms of bio-oil production and aqueous nutrient recycling than Dunaliella salina and Enteromorpha prolifera, in which Nannochloropsis sp. exhibited the greatest utilization potential at investigated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Schenk, S. Thomas-Hall, E. Stephens, U. Marx, J. Mussgnug, C. Posten, O. Kruse and B. Hankamer, Bioenerg Res., 1(1), 20 (2008).

    Article  Google Scholar 

  2. X. Miao, Q. Wu and C. Yang, J. Anal. Appl. Pyrolysis, 71(2), 855 (2004).

    Article  CAS  Google Scholar 

  3. H. Xu, X. Miao and Q. Wu, J. Biotechnol., 126(4), 499 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. P. E. Savage, Science, 338(6110), 1039 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. D. López Barreiro, W. Prins, F. Ronsse and W. Brilman, Biomass Bioenergy, 53, 113 (2013).

    Article  CAS  Google Scholar 

  6. C. Tian, B. Li, Z. Liu, Y. Zhang and H. Lu, Renew. Sust. Energy Rev., 38, 933 (2014).

    Article  CAS  Google Scholar 

  7. N. Akiya and P. E. Savage, Chem. Rev., 102(8), 272 (2002).

    Article  CAS  Google Scholar 

  8. A. A. Peterson, F. Vogel, R. P. Lachance, M. Froling, J. M. J. Antal and J. W. Tester, Energy Environ. Sci., 1(1), 32 (2008).

    Article  CAS  Google Scholar 

  9. P. Duan and P. E. Savage, Ind. Eng. Chem. Res., 50(1), 52 (2010).

    Article  CAS  Google Scholar 

  10. L. Cao, G. Luo, S. Zhang and J. Chen, RSC Adv., 6(18), 15260 (2016).

    Article  CAS  Google Scholar 

  11. D. Zhou, L. Zhang, S. Zhang, H. Fu and J. Chen, Energy Fuel, 24(7), 4054 (2010).

    Article  CAS  Google Scholar 

  12. W. H. Song, S. Z. Wang, Y. Guo and D. H. Xu, Int. J. Hydrogen Energy, 42(31), 20361 (2017).

    Article  CAS  Google Scholar 

  13. Y. Dote, S. Sawayama, S. Inoue, T. Minowa and S.-y. Yokoyama, Fuel, 73(12), 1855 (1994).

    Article  CAS  Google Scholar 

  14. P. J. Valdez M. C. Nelson, H. Y. Wang, X. N. Lin and P. E. Savage, Biomass Bioenergy, 46, 317 (2012).

    Article  CAS  Google Scholar 

  15. U. Jena, K. C. Das and J. R. Kastner, Bioresour. Technol., 102(10), 6221 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. T. M. Brown, P. G. Duan and P. E. Savage, Energy Fuel, 24(6), 3639 (2010).

    Article  CAS  Google Scholar 

  17. C. Miao, M. Chakraborty and S. Chen, Bioresour. Technol., 110, 617 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. P. J. Valdez and P. E. Savage, Algal Res., 2(4), 416 (2013).

    Article  Google Scholar 

  19. S. S. Toor, H. Reddy, S. Deng, J. Hoffmann, D. Spangsmark, L. B. Madsen, J. B. Holm-Nielsen and L. A. Rosendahl, Bioresour. Technol., 131, 413 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Guo, W. H. Song, J. M. Lu, O. R. Ma, D. H. Xu and S. Z. Wang, Algal Res., 11, 242 (2015).

    Article  Google Scholar 

  21. B. Zhang, Q. S. Lin, Q. H. Zhang, K. J. Wu, W. H. Pu, M. D. Yang and Y. L. Wu, RSC Adv., 7(15), 8944 (2017).

    Article  CAS  Google Scholar 

  22. C. Yang, L. Jia, C. Chen, G. Liu and W. Fang, Bioresour. Technol., 102(6), 4580 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. W. Yang, X. Li, S. Liu and L. Feng, Energy Convers. Manage., 87, 938 (2014).

    Article  CAS  Google Scholar 

  24. L. B. Diego, S. Chiara, T. Giuseppe, H. Ursel, K. Andrea and P. Wolter, Bioresour. Technol., 174, 256 (2014).

    Article  CAS  Google Scholar 

  25. S. P. Zou, Y. L. Wu, M. D. Yang, C. Li and J. M. Tong, Energy Environ. Sci., 3(8), 1073 (2010).

    Article  CAS  Google Scholar 

  26. J. W. Lu, Z. D. Liu, Y. H. Zhang, B. M. Li, Q. Lu, Y. Q. Ma, R. X. Shen and Z. B. Zhu, J. Clean Prod., 142, 749 (2017).

    Article  CAS  Google Scholar 

  27. C. Hognon, F. Delrue, J. Texier, M. Grateau, S. Thiery, H. Miller and A. Roubaud, Biomass Bioenergy, 73, 23 (2015).

    Article  CAS  Google Scholar 

  28. B. E.-O. Eboibi, D. M. Lewis, P. J. Ashman and S. Chinnasamy, Bioresour. Technol., 174, 212 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. U. Jena, K. C. Das and J. R. Kastner, Appl. Energy, 98, 368 (2012).

    Article  CAS  Google Scholar 

  30. R. Abdul, W. A. K. G. Wan Azlina, Y. H. Taufiq Yap, M. K. Danquah and H. Razif, RSC Adv., 5(88), 71805 (2015).

    Article  CAS  Google Scholar 

  31. L. J. Leng, J. Li, Z. Y. Wen and W. G. Zhou, Bioresour. Technol., 256, 529 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. B. V. Mariluz, S. S. Ulrike, P. Gael, V. Frederic and L. Christian, Algal Res., 8, 76 (2015).

    Article  Google Scholar 

  33. U. Jena, N. Vaidyanathan, S. Chinnasamy and K. C. Das, Bioresour. Technol., 102(3), 3380 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. G. Yu, Y. Zhang, L. Schideman, T. Funk and Z. Wang, Energy Environ. Sci., 4(11), 4587 (2011).

    Article  CAS  Google Scholar 

  35. Y. H. Zhu, S. B. Jones, A. J. Schmidt, K. O. Albrecht, S. J. Edmundson and D. B. Anderson, Algal Res., 39, 101467 (2019).

    Article  Google Scholar 

  36. Y. H. Zhang and L. Schideman, E2-Energy, http://e2-energy.illinois.edu/ (Accessed March 6th 2011).

  37. T. Selvaratnam, S. M. Henkanatte-Gedera, T. Muppaneni, N. Nirmalakhandan, S. Deng and P. J. Lammers, Energy, 104, 16 (2016).

    Article  CAS  Google Scholar 

  38. Y. Li, S. Leow, A. C. Fedders, B. K. Sharma, J. S. Guest and T. J. Strathmann, Green Chem., 19(4), 1163 (2017).

    Article  CAS  Google Scholar 

  39. R. B. Madsen, P. Biller, M. M. Jensen, J. Becker, B. B. Iversen and M. Glasius, Energy Fuels, 30(12), 10470 (2016).

    Article  CAS  Google Scholar 

  40. R. Cherad, J. A. Onwudili, P. Biller, P. T. Williams and A. B. Ross, Fuel, 166, 24 (2016).

    Article  CAS  Google Scholar 

  41. C. Gai, Y. Zhang, W.-T. Chen, Y. Zhou, L. Schideman, P. Zhang, G. Tommaso, C.-T. Kuo and Y. Dong, Bioresour. Technol., 184, 328 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. S. Edmundson, M. Huesemann, R. Kruk, T. Lemmon, J. Billing, A. Schmidt and D. Anderson, Algal Res., 26, 415 (2017).

    Article  Google Scholar 

  43. D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt and S. B. Jones, Bioresour. Technol., 178, 147 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. J. L. Faeth, P. J. Valdez and P. E. Savage, Energy Fuel, 27(3), 1391 (2013).

    Article  CAS  Google Scholar 

  45. W. J. Liu, K. Tian, H. Jiang, X. S. Zhang, H. S. Ding and H. Q. Yu, Environ. Sci. Technol., 46(14), 7849 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. J. F. Stanzione, P. A. Giangiulio, J. M. Sadler, J. J. La Scala and R. P. Wool, ACS Sustain. Chem. Eng., 1(4), 419 (2013).

    Article  CAS  Google Scholar 

  47. P. Biller and A. B. Ross, Bioresour. Technol., 102(1), 215 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. K. Anastasakis and A. B. Ross, Bioresour. Technol., 102(7), 4876 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. D. R. Vardon, B. K. Sharma, J. Scott, G. Yu, Z. Wang, L. Schideman, Y. Zhang and T. J. Strathmann, Bioresour. Technol., 102(17), 8295 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. P. J. Valdez, J. G. Dickinson and P. E. Savage, Energy Fuel, 25(7), 3235 (2011).

    Article  CAS  Google Scholar 

  51. Z. Srokol, A.-G. Bouche, A. van Estrik, R. C. J. Strik, T. Maschmeyer and J. A. Peters, Carbohydr. Res., 339(10), 1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. W. T. Chen, Y. H. Zhang, J. X. Zhang, G. Yu, L. C. Schideman, P. Zhang and M. Minarick, Bioresour. Technol., 152, 130 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. L. Qian, S. Wang and P. E. Savage, Bioresour. Technol., 232, 27 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. W. T. Chen, Y. H. Zhang, J. X. Zhang, L. Schideman, G. Yu, P. Zhang and M. Minarick, Appl. Energy, 128, 209 (2014).

    Article  CAS  Google Scholar 

  55. P. T. Williams and J. Onwudili, Ind. Eng. Chem. Res., 44(23), 8739 (2005).

    Article  CAS  Google Scholar 

  56. D. A. Nelson, P. M. Molton, J. A. Russell and R. T. Hallen, Ind. Eng. Chem. Prod. Res. Dev., 23(3), 471 (1984).

    Article  CAS  Google Scholar 

  57. A. Sinağ, A. Kruse and V. Schwarzkopf, Ind. Eng. Chem. Res., 42(15), 3516 (2003).

    Article  Google Scholar 

  58. G. C. A. Luijkx, F. van Rantwijk and H. van Bekkum, Carbohydr. Res., 242, 131 (1993).

    Article  CAS  Google Scholar 

  59. P. Bohutskyi, M. J. Betenbaugh and E. J. Bouwer, Bioresour. Technol., 155, 366 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. N. Sato, A. T. Quitain, K. Kang, H. Daimon and K. Fujie, Ind. Eng. Chem. Res., 43, 3217 (2004).

    Article  CAS  Google Scholar 

  61. S. P. Zou, Y. L. Wu, M. D. Yang, K. Imdad, C. Li and J. M. Tong, Energy, 35(12), 5406 (2010).

    Article  CAS  Google Scholar 

  62. U. Jena and K. C. Das, Energy Fuel, 25(11), 5472 (2011).

    Article  CAS  Google Scholar 

  63. D. L. Barreiro, C. Zamalloa, N. Boon, W. Vyverman, F. Ronsse, W. Brilman and W. Prins, Bioresour. Technol., 146, 463 (2013).

    Article  CAS  Google Scholar 

  64. C. Torri, L. Garcia Alba, C. Samorì, D. Fabbri and D. W. F. Brilman, Energy Fuel, 26(1), 658 (2012).

    Article  CAS  Google Scholar 

  65. Y. F. Yang, C. P. Feng, Y. Inamori and T. Maekawa, Resour. Conserv. Recycl, 43(1), 21 (2004).

    Article  Google Scholar 

  66. C. Y. Tian, Z. D. Liu, Y. H. Zhang, B. M. Li, W. Cao, H. F. Lu, N. Duan, L. Zhang and T. T. Zhang, Bioresour. Technol., 184, 336 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. A. Sukenik, D. Tchernov, A. Kaplan, E. Huertas, L. M. Lubian and A. Livne, J. Phycol., 33, 969 (1997).

    Article  CAS  Google Scholar 

  68. J. C. M. Carvalho, F. R. Francisco, K. A. Almeida, S. Sato and A. Converti, J. Phycol., 40, 589 (2004).

    Article  CAS  Google Scholar 

  69. S. Belkin and S. Boussiba, Plant Cell Physiol., 32(7), 953 (1991).

    Article  CAS  Google Scholar 

  70. C. Gai, Y. Zhang, W.-T. Chen, Y. Zhou, L. Schideman, P. Zhang, G. Tommaso, C.-T. Kuo and Y. Dong, Bioresour. Technol., 184, 328 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. B. Maddi, E. Panisko, T. Wietsma, T. Lemmon, M. Swita, K. Albrecht and D. Howe, Biomass Bioenergy, 93, 122 (2016).

    Article  CAS  Google Scholar 

  72. I. Kulaev, V. Vagabov and T. Kulakovskaya, J. Biosci. Bioeng., 88(2), 111 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. R. Shakya, S. Adhikari, R. Mahadevan, S. R. Shanmugam, H. Nam, E. B. Hassan and T. A. Dempster, Bioresour. Technol., 243, 1112 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. L. Garcia Alba, C. Torri, C. Samorì, J. van der Spek, D. Fabbri, S. R. A. Kersten and D. W. F. Brilman, Energy Fuel, 26(1), 642 (2011).

    Article  CAS  Google Scholar 

  75. I. S. Chronakis, J. Agr. Food Chem., 49(2), 888 (2001).

    Article  CAS  Google Scholar 

  76. A. A. Peterson, R. P. Lachance and J. W. Tester, Ind. Eng. Chem. Res., 49(5), 2107 (2010).

    Article  CAS  Google Scholar 

  77. Y. Y. Wang and C. H. Wang, J. Yantai Univ. (In Chinese), 19(2), 125 (2006).

    CAS  Google Scholar 

  78. J. G. Liu, J. P. Zhang, M. Y. Yin and Z. C. Meng, Studia Marina Sinica (In Chinese), 48, 55 (2007).

    Google Scholar 

  79. X. F. Li, C. H. Wang and S. H. Wen, Food Ferment Ind. (In Chinese), 25(4), 13 (1999).

    CAS  Google Scholar 

  80. S. L. Lou, L. G. Wu, C. X. He and Q. J. Wu, J. Xiamen Univ. (In Chinese), 35(6), 955 (1996).

    Google Scholar 

  81. D. J. Shan and J. H. Gong, China Patent, ZL200910091011.4 (2009).

  82. K. M. Wang, J. Hangzhou Inst. Appl. Eng. (In Chinese), 17(3), 167 (2005).

    CAS  Google Scholar 

  83. T. Wu, Preliminary Study on the Influence of Nutrients on the Growth of Ulva prolifera and its Absorption of Different Nitrogen Species [Master Dissertation]. Qingdao China (2013).

Download references

Acknowledgement

This research is supported by Fundamental Research Funds for the Central Universities [xjj2018006], National Natural Science Foundation of China (Grant No. 51876174 and 21576219) and Shaanxi Province Natural Science Foundation of China (2018JM5011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhong Wang.

Supporting Information

11814_2019_345_MOESM1_ESM.pdf

Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Wang, S., Xu, D. et al. Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction. Korean J. Chem. Eng. 36, 1604–1618 (2019). https://doi.org/10.1007/s11814-019-0345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0345-4

Keywords

Navigation