Skip to main content
Log in

Fabrication of tubular ceramic-supported malic acid cross-linked poly(vinyl alcohol)/rice husk ash-silica nanocomposite membranes for ethanol dehydration by pervaporation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Silica nanoparticles were prepared from rice husk ash (RHA-silica) by precipitation method. The characterization of RHA-silica was studied by X-ray fluorescence, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, and Brunauer-Emmett-Teller specific surface area. Results showed that RHA-silica was successfully synthesized with a particle size of 5-15 nm and purity of 98.08%. The obtained RHA-silica was applied with different content for fabrication of tubular ceramic-supported poly(vinyl alcohol) membranes using malic acid as a cross-linking agent (RHA-silica/MA-PVA) by dip-coating and solvent evaporation methods. The tubular ceramic-supported RHA-silica/MA-PVA membranes were used for dehydration of 95 wt% ethanol solution by pervaporation (PV) technology. Results indicated membrane with 15 wt% RHA-silica (15RHA-silica/MA-PVA) was suitable for the dehydration with permeate flux of 0.0856 kg/m2·h, separation factor of 46.6, and pervaporation separation index of 3.9 kg/m2h. The tubular ceramic-supported 15RHA-silica/MA-PVA membrane was characterized using XRD, FTIR, scanning electron microscope, differential scanning calorimetry, and contact angle measurement. Results showed that this membrane was 30 μm thick, mechanical stable (swelling rate, 133.9%), hydrophobic (contact angle, 81°), and thermal stable (glass transition temperature, 138.7 °C). Therefore, the tubular ceramic-supported nanocomposite membrane could be considered as a potential alternative for PV dehydration of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Uragami, T. Saito and T. Miyata, Carbohydr. Polym., 120, 1 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. R. Baker, Membrane technology and applications, England, Second Edition, Wiley, 545 (2014).

  3. Y. K. Ong, G. M. Shi, N. L. Le, Y. P. Tang, J. Zuo, S. P. Nunes and T. S. Chung, Prog. Polym. Sci., 57, 1 (2016).

    Article  CAS  Google Scholar 

  4. K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt and K. Kleinermanns, Membranes, 2, 727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Liu and S. E. Kentish. J. Membr. Sci., 553, 63 (2018).

    Article  CAS  Google Scholar 

  6. Y. Zhu, S. Xia, G. Liu and W. Jin, J. Membr. Sci., 349, 341 (2010).

    Article  CAS  Google Scholar 

  7. N. M. Kha and N. H. Hieu, 5th World Conference on Applied Sciences, Engineering & Technology, Ho Chi Minh (2016).

  8. N. N. P. Duy and N. H. Hieu, Eng. Trans., 56, 1693 (2017).

    Google Scholar 

  9. M. Sameia, M. Iravaniniaa, T. Mohammadia and A. A. Asadibi, Chem. Eng. Process. Process Intensif., 109, 11 (2016).

    Article  CAS  Google Scholar 

  10. H. Nagasawa and T. Tsuru, Current Trends and Future Developments on (Bio-) Membranes, 217, Elsevier (2017).

  11. M. Samei, T. Mohammadi and A. A. Asadi, Chem. Eng. Res. Des., 91, 2703 (2013).

    Article  CAS  Google Scholar 

  12. H. Pingan, J. Mengjun, Z. Yanyan and H. Ling, RSC Adv., 7, 2450 (2017).

    Article  Google Scholar 

  13. S. Gu, J. Zhou, C. Yu, Z. Luo, Q. Wang and Z. Shi, Ind. Crops Prod., 65, 1 (2015).

    Article  CAS  Google Scholar 

  14. V. R. Shelke, S. S. Bhagade and S. A. Mandavgane, Bull. Chem. React. Eng. Catal., 5, 63 (2011).

    Article  Google Scholar 

  15. P. Velmurugan, J. Shim, K. J. Lee, M. Cho, S. S. Lim, S. K. Seo and B. T. Oh, J. Ind. Eng. Chem., 29, 298 (2015).

    Article  CAS  Google Scholar 

  16. J. Li, C. Yang, L. Zhang and T. Ma, J. Organomet. Chem., 696(9), 1845 (2011).

    Article  CAS  Google Scholar 

  17. C. N. H. Thuc and H. H. Thuc, Nanoscale Res. Lett., 8, 58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Rafiee, S. Shahebrahimi, M. Feyzi and M. Shaterzadeh, Int. Nano Lett., 2, 29 (2012).

    Article  Google Scholar 

  19. T. J. Alwan1, Z. A. Toma, M. A. Kudhier and K. M. Ziadan, Madridge J. Nano Tec. Sci., 1, 1 (2016).

  20. Z. Peng, L. X. Kong, S. D. Li and P. Spiridonov, J. Nanosci. Nanotechnol., 6(12), 3934 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Huu Hieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoc, T.M., Man, T.M., Phong, M.T. et al. Fabrication of tubular ceramic-supported malic acid cross-linked poly(vinyl alcohol)/rice husk ash-silica nanocomposite membranes for ethanol dehydration by pervaporation. Korean J. Chem. Eng. 36, 584–590 (2019). https://doi.org/10.1007/s11814-019-0235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0235-9

Keywords

Navigation