Skip to main content
Log in

Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Performance of electrodegradation process using stainless steel net electrodes was explored for removal of tetracycline (TC) from synthetic wastewater in a laboratory batch study. Main effects of various operating parameters, such as initial TC concentration (20 and 100 mg/L), reaction pH (3.0 and 9.0), current density (4.1 and 17.1 mA/cm2), agitation speed (250 and 750 rpm), and electrolysis time (20, 50, and 80 min), and their interactions on the TC removal efficiency, were optimized by means of a five-factor and two-level factorial experimental design methodology. The significance of responses obtained from the proposed design (sixteen experimental runs under batch mode conditions) was statistically evaluated by preparing a Pareto chart, half-normal probability plot, and plots of main effects and their interactions (herein referred to as Factions) within the framework of the analysis of variance (ANOVA). The statistical results corroborated with 95% certainty that TC concentration, pH, and current density showed the largest effects (absolute values) on the TC removal efficiency. Besides the most effective Factions, a sodium sulfate (used as supporting electrolyte) dose of 1 g/200 cc was determined as the optimum value for the studied process. Under the conditions of an initial TC concentration=20 mg/L, a reaction pH=3.0, current density=17.1 mA/cm2, an agitation speed=250 rpm, and an electrolysis time=20 min, about 70% of TC could be successfully removed from the simulated wastewater. Findings of this experimental study clearly confirmed the applicability of the electrodegradation process for the removal of a broad spectrum antibacterial agent like TC, and also demonstrated the effectiveness of the factorial design methodology before transferring the obtained experimental knowledge for a full-scale facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, P. Liu, Y. Feng and F. Yang, Marine Pollution Bulletin, 73, 282 (2013).

    Article  CAS  Google Scholar 

  2. G. Hou, X. Hao, R. Zhang, J. Wang, R. Liu and C. Liu, Biores. Technol., 212, 20 (2016).

    Article  CAS  Google Scholar 

  3. S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, C.M. Borrego, D. Barceló and J.L. Balcázar, Water Res., 69, 234 (2015).

    Article  CAS  Google Scholar 

  4. A. Garcia-Rodríguez, V. Matamoros, C. Fontàs and V. Salvadó, Chemosphere, 90, 2297 (2013).

    Article  Google Scholar 

  5. L. Hou, H. Zhang and X. Xue, Sep. Purif. Technol., 84, 147 (2012).

    Article  CAS  Google Scholar 

  6. C. Brinzila, M. Pacheco, L. Ciríaco, R. Ciobanu and A. Lopes, Chem. Eng. J., 209, 54 (2012).

    Article  CAS  Google Scholar 

  7. Q. Yi, Y. Gao, H. Zhang, H. Zhang, Y. Zhang and M. Yang, Chem. Eng. J., 300, 139 (2016).

    Article  CAS  Google Scholar 

  8. J. Ou, M. Mei and X. Xu, J. Solid State Chem., 238, 182 (2016).

    Article  CAS  Google Scholar 

  9. J. Li, M. Han, Y. Guo, F. Wang, L. Meng, D. Mao, S. Ding and C. Sun, Appl. Catal. A: Gen., 524, 105 (2016).

    Article  CAS  Google Scholar 

  10. Q. Liu, Y. Zheng, L. Zhong and X. Cheng, J. Environ. Sci., 28, 29 (2015).

    Article  Google Scholar 

  11. Z.N. Norvill, A. Toledo-Cervantes, S. Blanco, A. Shilton, B. Guieysse and R. Muñoz, Bioresour. Technol., 232, 35 (2017).

    Article  CAS  Google Scholar 

  12. X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang and J. Chen, Bioresour. Technol., 154, 209 (2014).

    Article  CAS  Google Scholar 

  13. C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016).

    Article  CAS  Google Scholar 

  14. L. Yan, Y. Wang, J. Li, H. Ma, H. Liu, T. Li and Y. Zhang, Desalination, 341, 87 (2014).

    Article  CAS  Google Scholar 

  15. F. Ferrag-Siagh, F. Fourcade, I. Soutrel, H. Aït-Amar, H. Djelal and A. Amrane, J. Chem. Technol. Biotechnol., 88, 1380 (2013).

    Article  CAS  Google Scholar 

  16. N. Oturan, J. Wu, H. Zhang, V. K. Sharma and M. A. Oturan, Appl. Catal. B: Environ., 140, 92 (2013).

    Article  Google Scholar 

  17. F. Duan, Y. Li, H. Cao, Y. Wang, J.C. Crittenden and Y. Zhang, Chemosphere, 125, 205 (2015).

    Article  CAS  Google Scholar 

  18. R. Daghrir, P. Drogui and J. Tshibangu, Sep. Purif. Technol., 131, 79 (2014).

    Article  CAS  Google Scholar 

  19. S. Zheng, F. Yang, S. Chen, L. Liu, Q. Xiong, T. Yu, F. Zhao, U. Schröder and H. Hou, J. Power Sources, 284, 252 (2015).

    Article  CAS  Google Scholar 

  20. E. Yuksel, M. Eyvaz and E. Gurbulak, Environ. Prog. Sustain. Energy, 32, 60 (2013).

    Article  CAS  Google Scholar 

  21. S. Pulkka, M. Martikainen, A. Bhatnagar and M. Sillanpää, Sep. Purif. Technol., 132, 252 (2014).

    Article  CAS  Google Scholar 

  22. E. Brillas and I. Sirés, TrAC Trends in Analytical Chemistry, 70, 112 (2015).

    Article  CAS  Google Scholar 

  23. F. Gerayeli, F. Ghojavand, S. M. Mousavi, S. Yaghmaei and F. Amiri, Sep. Purif. Technol., 118, 151 (2013).

    Article  CAS  Google Scholar 

  24. K.M. Sharif, M.M. Rahman, J. Azmir, A. Mohamed, M.A. Jahurul, F. Sahena and I. S. M. Zaidul, J. Food Eng., 124, 105 (2014).

    Article  CAS  Google Scholar 

  25. W.H. Wong, W. X. Lee, R. N. Ramanan, L. H. Tee, K.W. Kong, C. M. Galanakis, J. Sun and K.N. Prasad, Ind. Crop. Prod., 63, 238 (2015).

    Article  CAS  Google Scholar 

  26. C. Huyskens, J. Helsen and A. de Haan, Desalination, 328, 8 (2013).

    Article  CAS  Google Scholar 

  27. T.Y. Wu, A.W. Mohammad and N. Anuar, J. Chem. Technol. Biotechnol., 84, 1390 (2009).

    Article  CAS  Google Scholar 

  28. K. P.Y. Shak and T.Y. Wu, Ind. Crop. Prod., 76, 1169 (2015).

    Article  CAS  Google Scholar 

  29. M.R. Samarghandi, M. Khiadani, M. Foroughi and H. Z. Nasab, Environ. Sci. Pollut. Res., 23, 887 (2016).

    Article  CAS  Google Scholar 

  30. M.N. Sepehr, K. Yetilmezsoy, S. Marofi, M. Zarrabi, H.R. Ghaffari, M. Fingas and M. Foroughi, J. Taiwan Inst. Chem. Eng., 45, 2786 (2014).

    Article  CAS  Google Scholar 

  31. R. Shokoohi, G. Asgari, M. Leili, M. Khiadani, M. Foroughi and M. S. Hemmat, Int. J. Environ. Sci. Technol., 14, 841 (2017).

    Article  CAS  Google Scholar 

  32. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan and J. Lv, Chem. Eng. J., 178, 26 (2011).

    Article  CAS  Google Scholar 

  33. T. Yehya, M. Chafi, W. Balla, C. Vial, A. Essadki and B. Gourich, Sep. Purif. Technol., 132, 644 (2014).

    Article  CAS  Google Scholar 

  34. M. Khiadani, M. Foroughi and M. M. Amin, Desalin. Water Treat., 52, 678 (2014).

    Article  CAS  Google Scholar 

  35. P. Nidheesh and R. Gandhimathi, Desalination, 299, 1 (2012).

    Article  CAS  Google Scholar 

  36. T. Zheng, Q. Wang, Z. Shi, Y. Fang, S. Shi, J. Wang and C. Wu, J. Environ. Sci., 50, 21 (2016).

    Article  Google Scholar 

  37. S. Benredouane, T. Berrama and N. Doufene, Chemometr. Intell. Lab. Syst., 155, 128 (2016).

    Article  CAS  Google Scholar 

  38. C. David, M. Arivazhagan and F. Tuvakara, Ecotoxicol. Environ. Saf., 121, 142 (2015).

    Article  CAS  Google Scholar 

  39. K. Govindan, M. Noel and R. Mohan, J. Water Process Eng., 6, 58 (2015).

    Article  Google Scholar 

  40. E. Henry Ezechi, M. H. Isa, S.R. bin Mohamed Kutty and Z. Ahmed, J. Environ. Chem. Eng., 3, 1962 (2015).

    Article  CAS  Google Scholar 

  41. Y. S. Jeon, J. S. Yang, E.R. Park, J.W. Yang and K. Baek, J. Taiwan Inst. Chem. Eng., 64, 142 (2016).

    Article  CAS  Google Scholar 

  42. E. E. Gerek, S. Yılmaz, A. S. Koparal, Ö.N. Gerek, J. Water Process Eng., (2017) (In Press, Corrected Proof).

    Google Scholar 

  43. T. I. Liakos, S. Sotiropoulos and N. K. Lazaridis, J. Environ. Chem. Eng., 5, 699 (2017).

    Article  CAS  Google Scholar 

  44. Y. Long, H. Li, X. Xing and J. Ni, Chem. Eng. J., 325, 360 (2017).

    Article  CAS  Google Scholar 

  45. C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou and M. Zhou, Chem. Eng. J., 228, 455 (2013).

    Article  CAS  Google Scholar 

  46. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei and A. Azari, J. Photochem. Photobiol. A Chem., 314, 178 (2016).

    Article  CAS  Google Scholar 

  47. Design Expert Software, In: Trial Version 8.0.7.1 User’s Guide (2011).

  48. E.A. Okogbenin, O.B. Okogbenin, J.U. Obibuzor and A.O. Emoghene, Int. J. Stat. Appl., 4, 117 (2014).

    Google Scholar 

  49. Eigenvector Documentation Wiki (2014), Half-normal probability plot, http://wiki.eigenvector.com/index.php?title=Half-Normal_ Probability_Plot. Accessed in July 2017.

  50. Y.N. Dholariya, Y. B. Bansod, R. M. Vora, S. S. Mittal, A. E. Shirsat and C. L. Bhingare, Int. J. Pharm. Investig., 4, 93 (2014).

    Article  Google Scholar 

  51. T. González, J.R. Domínguez, P. Palo, J. Sánchez-Martín and E. M. Cuerda-Correa, Desalination, 280, 197 (2011).

    Article  Google Scholar 

  52. V.T. Banala, B. Srinivasan, D. Rajamanickam, B. Basappa Veerbadraiah and M. Varadarajan, ISRN Pharmaceutics, 1 (2013).

    Google Scholar 

  53. K. Yetilmezsoy, S. Demirel and R. J. Vanderbei, J. Hazard. Mater., 171, 551 (2009).

    Article  CAS  Google Scholar 

  54. H. Zhang, Y. Li, X. Wu, Y. Zhang and D. Zhang, Waste Manage., 30, 2096 (2010).

    Article  CAS  Google Scholar 

  55. Minitab I. MINITAB Release 17: Statistical Software for Windows. Minitab Inc., U.S.A. (2014).

  56. B. Gomez-Ruiz, S. Gómez-Lavín, N. Diban, V. Boiteux, A. Colin, X. Dauchy and A. Urtiaga, Chem. Eng. J., 322, 196 (2017).

    Article  CAS  Google Scholar 

  57. C. Comninellis, M. Doyle and J. Winnick (Eds.), Energy and electrochemical processes for a cleaner environment, In: Proceedings of the International Symposium held during the 2001 Joint International Meeting of the ECS and ISE in San Francisco, California, U.S.A. (2001).

  58. S. Wilson, W. Farone, G. Leonard, J. Birnstingl and A. Leombruni, Catalyzed persulfate: advancing in situ chemical oxidation (ISCO) technology, Regenesis Bioremediation Products Inc., San Clemente, CA, U.S.A. (2013).

    Google Scholar 

  59. M. S. Diallo, N.A. Fromer and M. S. Jhon (Eds.), Nanotechnology for sustainable development. Springer Science & Business, New York, U.S.A. (2014).

    Google Scholar 

  60. T. Yehya, M. Chafi, W. Balla, C. Vial, A. Essadki and B. Gourich, Sep. Purif. Technol., 132, 644 (2014).

    Article  CAS  Google Scholar 

  61. J. Wisniak, S. Stefanovic, E. Rubin, Z. Hoffman and Y. Talmon, J. Am. Oil Chem. Soc., 48, 379 (1971).

    Article  CAS  Google Scholar 

  62. P. Asaithambi, M. Susree, R. Saravanathamizhan and M. Matheswaran, Desalination, 297, 1 (2012).

    Article  CAS  Google Scholar 

  63. V. Khandegar and A.K. Saroha, Chin. J. Chem. Eng., 20, 439 (2012).

    Article  CAS  Google Scholar 

  64. W. Can, H. Yao-Kun, Z. Qing and J. Min, Chem. Eng. J., 243, 1 (2014).

    Article  Google Scholar 

  65. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade and A. Amrane, Chem. Eng. J., 221, 418 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Samarghandi.

Electronic supplementary material

11814_2017_212_MOESM1_ESM.pdf

Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroughi, M., Arezoomand, H.R.S., Rahmani, A.R. et al. Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design. Korean J. Chem. Eng. 34, 2999–3008 (2017). https://doi.org/10.1007/s11814-017-0212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0212-0

Keywords

Navigation