Skip to main content

Advertisement

Log in

Feasibility study and benefit analysis of biomass-derived energy production strategies with a MILP (mixed-integer linear programming) model: Application to Jeju Island, Korea

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We developed a new approach to analyze the feasibility and benefits of biomass utilization strategies for energy production. To achieve this goal, we first generated a biomass-to-energy network which consists of different conversion technologies and corresponding compounds. We then developed new optimization models using a mixed integer linear programming technique to identify the optimal and alternative strategies and point out their major cost drivers. We applied these models to the biomass-derived energy supply problem on Jeju Island, Korea, to answer a wide range questions related to biomass utilization. What is the cheapest way to produce liquid fuels from available biomass on Jeju Island? How much demand can be satisfied by biomass-derived liquid fuels? What combination of technologies and biomass resources gives the best economic benefits or productivity? Based on the case study of Jeju Island, we could provide useful guidelines to policy-makers and stakeholders in the energy business.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sammons, M. Eden, W. Yuan, H. Cullinan and B. Aksoy, Environ. Prog., 26(4), 349 (2007).

    Article  CAS  Google Scholar 

  2. I. Shin, G. Park, J. Lee, E. Kim and Y. Kim, 2014 IEEE Conference and Expo, 1 (2014).

    Google Scholar 

  3. M. Han, Y. Kim, W. Cho, G. Choi and B. Chung, Korean J. Chem. Eng., 33(1), 223 (2016).

    Article  CAS  Google Scholar 

  4. L. F. Gutiérrez, Ó J. Sánchez and C. A. Cardona, Bioresour. Technol., 100(3), 1227 (2009).

    Article  Google Scholar 

  5. M. Wright and R. C. Brown, Biofuel. Bioprod. Bior., 1(3), 191 (2007).

    Article  CAS  Google Scholar 

  6. J. H. Clark, J. Chem. Technol. Biot., 82(7), 603 (2007).

    Article  CAS  Google Scholar 

  7. P. Parthasarathy and S. Narayanan, Korean J. Chem. Eng., 32(11), 2236 (2015).

    Article  CAS  Google Scholar 

  8. A. Aden, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton and J. Lucas, NREL/LP-510-32438 (2002).

    Google Scholar 

  9. M. Brennan, D. Specca, B. Schilling, D. Tulloch, S. Paul, K. Sullivan, Z. Helsel, P. Hayes, J. Melillo and B. Simkins, New Jersey Agr. Exp. Station Publ., 1 (2007).

    Google Scholar 

  10. H. R. Ghatak, Renew. Sust. Energ. Rev., 15(8), 4042 (2011).

    Article  CAS  Google Scholar 

  11. D. J. Braden, C. A. Henao, J. Heltzel, C. C. Maravelias and J. A. Dumesic, Green Chem., 13(7), 1755 (2011).

    Article  CAS  Google Scholar 

  12. S. Murat Sen, C. A. Henao, D. J. Braden, J. A. Dumesic and C. T. Maravelias, Chem. Eng. Sci., 67(1), 57 (2012).

    Article  CAS  Google Scholar 

  13. S. A. Hosseini and N. Shah, Interface Focus., 1(2), 255 (2011).

    Article  Google Scholar 

  14. C. Piccolo and F. Bezzo, Biomass Bioenergy, 33(3), 478 (2009).

    Article  CAS  Google Scholar 

  15. F. K. Kazi, J. Fortman, R. Anex, G. Kothandaraman, D. Hsu, A. Aden and A. Dutta, NREL/TP-6A2-46588 (2010).

    Google Scholar 

  16. F. K. Kazi, J. A. Fortman, R. P. Anex, D. D. Hsu, A. Aden, A. Dutta and G. Kothandaraman, Fuel, 89, Supplement 1, S20 (2010).

    Article  CAS  Google Scholar 

  17. S. A. Hosseini, R. Lambert, S. Kucherenko and N. Shah, Energy Fuels, 24(9), 4673 (2010).

    Article  CAS  Google Scholar 

  18. S. Ngamprasertsith, S. Sunphorka, P. Kuchonthara, P. Reubroycharoen and R. Sawangkeaw, Korean J. Chem. Eng., 32(10), 2007 (2015).

    Article  CAS  Google Scholar 

  19. R. P. Anex, A. Aden, F. K. Kazi, J. Fortman, R. M. Swanson, M. M. Wright, J. A. Satrio, R. C. Brown, D. E. Daugaard, A. Platon, G. Kothandaraman, D. D. Hsu and A. Dutta, Fuel, 89, Supplement 1, S29 (2010).

    Google Scholar 

  20. T. R. Brown, M. M. Wright and R. C. Brown, Biofuel. Bioprod. Bior., 5(1), 54 (2011).

    Article  CAS  Google Scholar 

  21. E. D. Larson, S. Consonni, R. E. Katofsky, K. Iisa and W. Frederick, DE-FG26-04NT42260, Princeton Environmental Institute, Princeton University, Princeton, NJ, 21 (2006).

    Google Scholar 

  22. V. Dornburg, A. P. C. Faaij and B. Meuleman, Resour. Conserv. Recycling, 49(1), 68 (2006).

    Article  Google Scholar 

  23. S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renew. Sust. Energ. Rev., 14(2), 578 (2010).

    Article  CAS  Google Scholar 

  24. V. Chambost and P. R. Stuart, Ind. Biotechnol., 3(2), 112 (2007).

    Article  Google Scholar 

  25. L. K. James, S. M. Swinton and K. D. Thelen, Agron. J., 102(2), 675 (2010).

    Article  Google Scholar 

  26. Y. Kim, H. W. Lee, S. Lee, S. Kim, S. H. Park, J. Jeon, S. Kim and Y. Park, Korean J. Chem. Eng., 28(10), 2012 (2011).

    Article  CAS  Google Scholar 

  27. J. W. Kim, S. Lee, S. Kim, S. H. Park, J. Jeon and Y. Park, Korean J. Chem. Eng., 28(9), 1867 (2011).

    Article  CAS  Google Scholar 

  28. S.-I. Um, J. Jung, S. Choi, J. Won and J. Lee, J. Energ. Clim. Change, 5(1), 155 (2010).

    Google Scholar 

  29. Y. Woo, S. Cho, J. Kim and B. S. Kim, Int. J. Hydrogen Energy, 41(12), 5405 (2016).

    Article  CAS  Google Scholar 

  30. A. C. Kokossis and A. Yang, Comput. Chem. Eng., 34(9), 1397 (2010).

    Article  CAS  Google Scholar 

  31. J. E. Santibañez-Aguilar, J. B. González-Campos, J. M. Ponce-Ortega, M. Serna-González and M. M. El-Halwagi, Ind. Eng. Chem. Res., 50(14), 8558 (2011).

    Article  Google Scholar 

  32. D. J. Garcia and F. You, AIChE J., 61(2), 530 (2015).

    Article  CAS  Google Scholar 

  33. J. Kim, S. M. Sen and C. T. Maravelias, Energy Environ. Sci., 6(4), 1093 (2013).

    Article  CAS  Google Scholar 

  34. S. Maronese, A. V. Ensinas, A. Mian, A. Lazzaretto and F. Maréchal, Ind. Eng. Chem. Res., 54(28), 7038 (2015).

    Article  CAS  Google Scholar 

  35. S. Kim, W. Won and J. Kim, Renew. Energy, 97(1), 177 (2016).

    Google Scholar 

  36. K. No, Y. Jeon, J. Yang, H. Cheon and S. Jeong, Korea Livestock Economic Institute (KLEI/K10-06) (2010).

    Google Scholar 

  37. J. Kook, S. Jeon, S. Park, H. You, J. Shin and S. Lee, Appl. Chem. Eng., 26, 178 (2015).

    Article  CAS  Google Scholar 

  38. Y. C. Park, D. S. Kim, J. Huh and Y. G. Kim, World Renewable Energy Congress (ISBN 978-91-7393-070-3) (2011).

    Google Scholar 

  39. Y. Seo, Current MSW Management and Waste-to-Energy Status in the Republic of Korea, Columbia university, Newyork (2013).

    Google Scholar 

  40. J. Kook and S. Lee, Appl. Chem. Eng., 26(2), 178 (2015).

    Article  CAS  Google Scholar 

  41. J. Bae, Korean energy economic review (ISBN 978-89-5504-228-3) (2009).

    Google Scholar 

  42. E.-J. Min and S. Kim, Korean energy economic review (ISSN 1599-7057), 7(1), 133 (2008).

    Google Scholar 

  43. L. Castillo and C. Dorao, J. Nat. Gas. Sci. Eng., 2(6), 302 (2010).

    Article  Google Scholar 

  44. A. D. Patel, J. C. Serrano-Ruiz, J. A. Dumesic and R. P. Anex, Chem. Eng. J., 160(1), 311 (2010).

    Article  CAS  Google Scholar 

  45. M. Lim, J. Bang and Y. Yoon, Trans. Korean Hydrog. New Energy Soc., 17(2), 218 (2006).

    Google Scholar 

  46. M. Sloan and R. Meyer, ICF International, Inc., Propane Education & Research Council: Washington, DC (2009).

    Google Scholar 

  47. M. Rushton, CanBio Annual Conference (2012).

    Google Scholar 

  48. T. J. Schwartz, A. R. van Heiningen and M. C. Wheeler, Green Chem., 12(8), 1353 (2010).

    Article  CAS  Google Scholar 

  49. R. Chetty and K. Scott, J. New. Mat. Electr. Sys. Journal, 10(3), 135 (2007).

    CAS  Google Scholar 

  50. D. Supple, MIT Energy Club, http://web.mit.edu/mit_energy (latest update 04.15.07) (2007).

    Google Scholar 

  51. U. Lassi, R. Keiski, K. Kordás and J. Mikkola, Energy Research at the University of Oulu (2009).

    Google Scholar 

  52. Wood Resources International LLC, North American Wood Fiber Review 06-11 (2011).

  53. M. Ash, United States Department of Agriculture (OCS-15c) (2015).

    Google Scholar 

  54. Y. Lee, K. Kim, Y. Jang and K. Park, RDA Interrobang, 99 (2013).

    Google Scholar 

  55. B. Boundy, S. W. Diegel, L. Wright and S. C. Davis, United States Department of Energy (ORNL/TM-2011/446) (2011).

    Google Scholar 

  56. J. Yun, Korea Institute of Industrial Technology (KITECH 06-14) (2014).

    Google Scholar 

  57. M. Pfeffer, W. Wukovits, G. Beckmann and A. Friedl, Appl. Therm. Eng., 27(16), 2657 (2007).

    Article  Google Scholar 

  58. E. Ahmetovic, M. Martín and I. E. Grossmann, Ind. Eng. Chem. Res., 49(17), 7972 (2010).

    Article  CAS  Google Scholar 

  59. V. Dornburg and A. P. Faaij, Resour. Conserv. Recycling, 48(3), 227 (2006).

    Article  Google Scholar 

  60. B. O. Palsson, S. Fathi-Afshar, D. F. Rudd and E. N. Lightfoot, Science, 213(4507), 513 (1981).

    Article  CAS  Google Scholar 

  61. A. Jimenez and O. Chavez, Chem. Eng. J., 37(1), B1 (1988).

    Article  CAS  Google Scholar 

  62. A. C. Dimian, Comput. Aided Chem. Eng., 24, 309 (2007).

    Article  Google Scholar 

  63. D. R. Batsy, C. C. Solvason, N. E. Sammons, V. Chambost, D. L. Bilhartz, M. R. E. II, M. M. El-Halwagi and P. R. Stuart, Integrated Biorefineries: Design, Analysis, and Optimization, 1 (2012).

    Google Scholar 

  64. B. Kamm and M. Kamm, Biorefineries–multi product processes, Springer (2007).

    Book  Google Scholar 

  65. L. R. Lynd and M. Q. Wang, J. Ind. Ecol., 7, 17 (2003).

    Article  Google Scholar 

  66. S. Fernando, S. Adhikari, C. Chandrapal and N. Murali, Energy Fuels, 20(4), 1727 (2006).

    Article  CAS  Google Scholar 

  67. H. D. Hotel, V. Herndon, D. Beck, K. Boyack and M. Berman, Sandia National Laboratories (SAND98-0643) (1997).

    Google Scholar 

  68. R. M. Bright and A. H. Strømman, J. Ind. Ecol., 13(4), 514 (2009).

    Article  CAS  Google Scholar 

  69. R. M. Bright, A. H. Strømman and T. R. Hawkins, J. Ind. Ecol., 14(3), 422 (2010).

    Article  CAS  Google Scholar 

  70. F. Cherubini, G. Jungmeier, M. Wellisch, T. Willke, I. Skiadas, R. Van Ree and E. de Jong, Biofuel. Bioprod. Bior., 3(5), 534 (2009).

    Article  CAS  Google Scholar 

  71. R. E. Rosenthal, GAMS-A User’s Guide, Gams Development Corp. (2006).

    Google Scholar 

  72. R. Gonzalez, J. Daystar, M. Jett, T. Treasure, H. Jameel, R. Venditti and R. Phillips, Fuel Process Technol., 94(1), 113 (2012).

    Article  CAS  Google Scholar 

  73. S. B. Jones, Y. Zhu and C. Valkenburg, Richland, WA: Pacific Northwest National Laboratory (PNNL-18482) (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Kim, J. Feasibility study and benefit analysis of biomass-derived energy production strategies with a MILP (mixed-integer linear programming) model: Application to Jeju Island, Korea. Korean J. Chem. Eng. 34, 1604–1618 (2017). https://doi.org/10.1007/s11814-017-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0052-y

Keywords

Navigation