Skip to main content
Log in

Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sugarcane bagasse was pyrolyzed under oxygen-limited conditions from 100 to 600 °C and used for the adsorptive removal of oxidation intermediate p-benzoquinone, tetracycline, and polyvinyl alcohol. The three organic pollutants have different polarities and solubilities. The carbon content increased from 57.7% of the raw bagasse to 75.3% of the biochar pyrolyzed at 600 °C, while the O content decreased from 13.2% to 6.1%. Accordingly, the biochar surface became more hydrophobic with increasing pyrolytic temperature. Interestingly, the adsorption affinity of biochars towards the three pollutants improved with an increase in the pyrolytic temperature. The adsorption of tetracycline molecules was almost unaffected by its being negatively charged with increasing solution pH. A mechanism of π-π electron-donor-acceptor interaction might contribute to the adsorption of tetracycline and p-benzoquinone, while H-bond interaction between polyvinyl alcohol and the biochar might be dominant during adsorption. The Elovich model fitted the kinetic model well, indicating that the diffusional rate-determining step was more pronounced. An isotherm study indicated that the contribution of partitioning was also dominant in the adsorption processes. Wide application of the prepared biochars is expected for the efficient adsorptive removal of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Yang, R. C. Flowers, H. S. Weinberg and P. C. Singer, Water Res., 45, 5218 (2011).

    Article  CAS  Google Scholar 

  2. B. Xing, N. Senesi and P.M. Huang, IUPAC Sponsored Book Series., 2, 439 (2011).

    Google Scholar 

  3. M.A. Shannon, P.W. Bohn and M. Elimelech, Nature, 452, 301 (2008).

    Article  CAS  Google Scholar 

  4. T. Polubesova, D. Zadaka, L. Groisman and S. Nir, Water Res., 40, 2369 (2006).

    Article  CAS  Google Scholar 

  5. R. Andreozzi, V. Caprio, A. I. Nsola and R. Marotta, Catal Today, 53, 51 (1999).

    Article  CAS  Google Scholar 

  6. L.B. Stadler, A. S. Ernstoff, D. S. Aga and G.L. Nancy, Environ. Sci. Technol., 46, 10485 (2012).

    Article  CAS  Google Scholar 

  7. A. Santos, P. Yustos, A. Quintanill, F. García-Ocho, J. A. Casas and J. J. Rodríguez, Environ. Sci. Technol., 38, 133 (2004).

    Article  CAS  Google Scholar 

  8. A. Imran and V. K. Gupta, Nature Protocols, 1, 2661 (2007).

    Article  Google Scholar 

  9. A. Imran, Sepn. & Purfn. Rev., 39, 95 (2010).

    Article  Google Scholar 

  10. A. Imran, Chemical Reviews., 112, 5073 (2012).

    Article  Google Scholar 

  11. A. Imran, A.T. M. Tabrez and A. Khan, Environ. Manag., 113, 170 (2012).

    Article  Google Scholar 

  12. A. Imran, Sepn. Purfn. Reviews, 43, 175 (2014).

    Article  Google Scholar 

  13. L. L. Ji, W. Chen, L. Duan and D.Q. Zhu, Environ. Sci. Technol., 43, 2322 (2009).

    Article  CAS  Google Scholar 

  14. S.K. Behera, J. H. Kim, X. J. Guo and H. S. Park, J. Hazard. Mater., 153, 1207 (2008).

    Article  CAS  Google Scholar 

  15. J. Lehmann, Nature, 447, 143 (2007).

    Article  CAS  Google Scholar 

  16. J.W. Lee, B. Hawkins, D.M. Day and D.C. Reicosky, Energy Environ. Sci., 3, 1695 (2010).

    Article  CAS  Google Scholar 

  17. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan and D. Mohan, Chemosphere, 99, 19 (2014).

    Article  CAS  Google Scholar 

  18. M. Keiluweit, P. S. Nico, M.G. Johnson and M. Kleber, Environ. Sci. Technol., 44, 1247 (2010).

    Article  CAS  Google Scholar 

  19. Y.N. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang and Y.M. Zhou, Chem. Eng., 240, 574 (2014).

    Article  CAS  Google Scholar 

  20. B. L. Chen and Z.M. Chen, Chemosphere, 76, 127 (2009).

    Article  CAS  Google Scholar 

  21. B. Xing and J. J. Pignatello, Environ. Sci. Technolo., 31, 792 (1997).

    Article  CAS  Google Scholar 

  22. B. Chen, D. Zhou and L. Zhu, Environ. Sci. Technol., 42, 5137 (2008).

    Article  CAS  Google Scholar 

  23. F. Z. Li, G.T. Li and X.W. Zhang, J. Environ. Sci., 26, 708 (2014).

    Article  CAS  Google Scholar 

  24. P.H. Chang, Z. Li, W.T. Jiang and J. S. Jean. Colloids Surf., A Physicochem. Eng. Asp., 339, 94 (2009).

    Article  CAS  Google Scholar 

  25. J. H. Finley, Anal. Chem., 33, 1925 (1961).

    Article  CAS  Google Scholar 

  26. Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen and Y.M. Zhou, Chem. Eng., 242, 136 (2014).

    Article  CAS  Google Scholar 

  27. B. L. Chen and Z.M. Chen, Chemosphere, 76, 127 (2009).

    Article  CAS  Google Scholar 

  28. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem and A.R. A. Usman, Bioresour. Technol., 131, 374 (2013).

    Article  CAS  Google Scholar 

  29. Y. Chun, G.Y. Sheng, C.T. Chiou and B. S. Xing, Environ. Sci. Technol., 38, 4649 (2004).

    Article  CAS  Google Scholar 

  30. G. Cornelissen and O. Gustafsson, Environ. Sci. Technol., 39, 764 (2005).

    Article  CAS  Google Scholar 

  31. M. J.G. Antal, Ind. Eng. Chem. Res., 42, 1619 (2003).

    Article  CAS  Google Scholar 

  32. X.D. Zhu, Y.C. Liu, C. Zhou, G. Luo, S.C. Zhang and J.M. Chen, Carbon, 77, 627 (2014).

    Article  CAS  Google Scholar 

  33. Z.M. Xi and B. L. Chen, Environ. Sci., 26, 737 (2014).

    Article  CAS  Google Scholar 

  34. W. S. Carvalho, D.F. Martins, F.R. Gomes, I.R. Leite, L.G. Silva and R. Ruggiero, Biomass Bioenergy, 35, 3913 (2011).

    Article  CAS  Google Scholar 

  35. M. Franz, H.A. Arafat and N.G. Pinto, Carbon, 38, 1807 (2000).

    Article  CAS  Google Scholar 

  36. D. Zhu and J. J. Pignatello, Environ. Sci. Technol., 39, 2033 (2005).

    Article  CAS  Google Scholar 

  37. H. J. Liu, Y. Yang, J. Kang, M. H. Fan and J. H. Qu, J. Environ. Sci., 24, 242 (2012).

    Article  CAS  Google Scholar 

  38. M. Teixidó, J. J. Pignatello, J. L. Beltrán, M. Granados and J. Peccia, Environ. Sci. Technol., 45, 10020 (2011).

    Article  Google Scholar 

  39. H. Zheng, Z.Y. Wang, J. Zhao, H. Stephen and B. S. Xing, Environ. Pollut., 181, 60 (2013).

    Article  CAS  Google Scholar 

  40. X.R. Jing, Y.Y. Wang, W. J. Liu, Y. K. Wang and H. Jiang, Chem. Eng., 248, 168 (2014).

    Article  CAS  Google Scholar 

  41. J.Z. Ni, J. J. Pignatello and B. S. Xing, Environ. Sci. Technol., 45, 9240 (2011).

    Article  CAS  Google Scholar 

  42. S. Lagergren, Handlingar, 24, 1 (1898).

    Google Scholar 

  43. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  44. D.L. Sparks. Kinetics of Soil Chemical Process, Academic Press, New York (1989).

    Google Scholar 

  45. C. Aharoni, D. L. Sparks, S. Levinson and I. Revina, Soil. Sci. Soc. Am., 55, 1307 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoting Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhu, W., Zhu, L. et al. Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse. Korean J. Chem. Eng. 33, 2215–2221 (2016). https://doi.org/10.1007/s11814-016-0067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0067-9

Keywords

Navigation