Skip to main content

Advertisement

Log in

Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are considered as sustainable ‘green/bio plastics’ because they have potential to replace their depleting petroleum-based competitors in the recent future. To reach this goal, PHAs must be able to compete with the established petroleum-based plastics in both technical and economic aspects. The current PHA production is based on high-priced substrates of high nutritional value and simple carbon sources such as glucose, sucrose, starch, or vegetable oils. Non-food based carbon-rich complex polysaccharides of lignocellulosic and marine biomass can be used as alternative and suitable feedstock through consolidated bioprocessing (CBP). CBP is a promising strategy that involves the production of lytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products in a single process step. CBP offers very large cost reductions if microorganisms possessing the abilities are found or microbial processes are developed to utilize substrate and simultaneously produce products. This review focuses on possible available complex polysaccharides of lignocellulosic and marine biomass that can be used as resources to produce PHAs in biorefineries, including CBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Olson, J.E. McBride, A. J. Shaw and L.R. Lynd, Curr. Opin. Biotechnol., 23, 396 (2012).

    Article  CAS  Google Scholar 

  2. G. S. Jouzani and M. J. Taherzadeh, Biofuel Res. J., 5, 152 (2015).

    Article  Google Scholar 

  3. E. Palmqvist and B. Hahn-Hägerdal, Bioresour. Technol., 74, 17 (2000).

    Article  CAS  Google Scholar 

  4. E. Palmqvist and B. Hahn-Hägerdal, Bioresour. Technol., 74, 25 (2000).

    Article  CAS  Google Scholar 

  5. A. Aden and T. Foust, Cellulose, 16, 535 (2009).

    Article  CAS  Google Scholar 

  6. L.R. Lynd, W. H. van Zyl, J. E. McBride and M. Laser, Curr. Opin. Biotechnol., 16, 577 (2005).

    Article  CAS  Google Scholar 

  7. S. S. Sawant, B. K. Salunke and B. S. Kim, Bioresour. Technol., 194, 247 (2015).

    Article  CAS  Google Scholar 

  8. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science, 311, 484 (2006).

    Article  CAS  Google Scholar 

  9. J. Goldemberg, Science, 315, 808 (2007).

    Article  CAS  Google Scholar 

  10. M. E. Himmel, S.Y. Ding, D. K. Johnson, W. S. Adney, M.R. Nimlos, J.W. Brady and T.D. Foust, Science, 315, 804 (2007).

    Article  CAS  Google Scholar 

  11. J. P. Lange, Biofuel. Bioprod. Bior., 1, 39 (2007).

    Article  CAS  Google Scholar 

  12. G. L. Cao, L. Zhao, A. J. Wang, Z.Y. Wang and N.Q. Ren, Biotechnol. Biofuels, 7, 82 (2014).

    Article  Google Scholar 

  13. E. de Jong and G. Jungmeier, in Industrial biorefineries and white biotechnology, A. Pandey, R. Höfer, C. Larroche, M. Taherzadeh and M. Nampoothiri Eds., Elsevier (2015).

  14. B. Kamm and M. Kamm, Adv. Biochem. Eng. Biotechnol., 105, 175 (2007).

    CAS  Google Scholar 

  15. C. J. Brigham, K. Kurosawa, C. Rha and A. J. Sinskey, J. Microbial Biochem. Technol., S3, 002 (2011).

    Article  Google Scholar 

  16. O. Bobleter, Prog. Polym. Sci., 19, 797 (1994).

    Article  CAS  Google Scholar 

  17. S. Kim and B. E. Dale, Biomass Bioenergy, 26, 361 (2004).

    Article  Google Scholar 

  18. R. Kumar, S. Singh and O.V. Singh, J. Ind. Microbiol. Biotechnol., 35, 377 (2008).

    Article  CAS  Google Scholar 

  19. J. Lee, J. Biotechnol., 56, 1 (1997).

    Article  CAS  Google Scholar 

  20. F. Cherubini, Energy Convers. Manage., 51, 1412 (2010).

    Article  CAS  Google Scholar 

  21. V. Menon and M. Rao, Prog. Energy Combust., 38, 522 (2012).

    Article  CAS  Google Scholar 

  22. P. Beguin and M. Lemaire, Crit. Rev. Biochem. Mol. Biol., 31, 201 (1996).

    Article  CAS  Google Scholar 

  23. P. Tomme, R. A. J. Warren and N.R. Gilkes, Adv. Microb. Physiol., 37, 1 (1995).

    Article  CAS  Google Scholar 

  24. L.R. Lynd, P. J. Weimer, W. H. van Zyl and I. S. Pretorius, Microbiol. Mol. Biol. R., 66, 506 (2002).

    Article  CAS  Google Scholar 

  25. R.A. J. Warren, Annu. Rev. Microbiol., 50, 183 (1996).

    Article  CAS  Google Scholar 

  26. L. E. Taylor II, PhD Dissertation, University of Maryland, College Park (2005).

    Google Scholar 

  27. A. Brandt, J. Gräsvik, J. P. Hallett and T. Welton, Green Chem., 15, 550 (2013).

    Article  CAS  Google Scholar 

  28. N. Wei, J. Quarterman and Y. S. Jin, Trends Biotechnol., 31, 70 (2013).

    Article  CAS  Google Scholar 

  29. J. Fargione, J. Hill, D. Tilman, S. Polasky and P. Hawthorne, Science, 319, 1235 (2008).

    Article  CAS  Google Scholar 

  30. R. Dominguez-Faus, S. E. Powers, J. G. Burken and P. J. Alvarez, Environ. Sci. Technol., 43, 3005 (2009).

    Article  CAS  Google Scholar 

  31. C. S. Lobban and M. J. Wynne, The biology of seaweeds, University of California Press, 17 (1981).

    Google Scholar 

  32. J.M. Adams, J.A. Gallagher and I. S. Donnison, J. Appl. Phycol., 21, 569 (2009).

    Article  CAS  Google Scholar 

  33. S.M. Lee and J. H. Lee, Bioresour. Technol., 102, 5962 (2011).

    Article  CAS  Google Scholar 

  34. S. J. Horn, I. M. Aasen and K. Østgaard, J. Ind. Microbiol. Biotechnol., 25, 249 (2000).

    Article  CAS  Google Scholar 

  35. A. J. Wargacki, E. Leonard, M.N. Win, D.D. Regitsky, C. N. S. Santos, P.B. Kim, S.R. Cooper, R.M. Raisner, A. Herman, A.B. Sivitz, A. Lakshmanaswamy, Y. Kashiyama, D. Baker and Y. Yoshikuni, Science, 335, 308 (2012).

    Article  CAS  Google Scholar 

  36. S. S. Sawant, B. K. Salunke and B. S. Kim, Enzyme Microb. Technol., 77, 8 (2015).

    Article  CAS  Google Scholar 

  37. C.N. Jol, T. G. Neiss, B. Penninkhof, B. Rudolph and G. A. de Ruiter, Anal. Biochem., 268, 213 (1999).

    Article  CAS  Google Scholar 

  38. B. Quemener and M. Lahaye, J. Appl. Phycol., 10, 75 (1998).

    Article  CAS  Google Scholar 

  39. C. Kim, H. J. Ryu, S. H. Kim, J. J. Yoon, H. S. Kim and Y. J. Kim, Bull. Korean Chem. Soc., 31, 511 (2010).

    Article  CAS  Google Scholar 

  40. E.A. Bayer and R. Lamed, Biodegradation, 3, 171 (1992).

    Article  CAS  Google Scholar 

  41. L.G. Ljungdahl and K.E. Eriksson, in Advances in microbial ecology, K. Marshall Eds, Springer US, 8 (1985).

  42. S.V. Patil, G.A. Bathe, A.V. Patil, R. H. Patil and B. K. Salunke, Adv. Biotechnol., 8, 14 (2009).

    Google Scholar 

  43. A.K. Gupta, G. Rastogi, D. Nayduch, S. S. Sawant, R.R. Bhonde and Y. S. Shouche, Med. Vet. Entomol., 28, 345 (2014).

    Article  CAS  Google Scholar 

  44. B.K. Salunke, S. S. Sawant and B. S. Kim, Appl. Biochem. Biotechnol., 174, 587 (2014).

    Article  CAS  Google Scholar 

  45. B.K. Salunke, S. S. Sawant, S. I. Lee and B. S. Kim, Appl. Microbiol. Biotechnol., 99, 5419 (2015).

    Article  CAS  Google Scholar 

  46. J.H. Yun, S. S. Sawant and B. S. Kim, Korean J. Chem. Eng., 30, 2223 (2013).

    Article  CAS  Google Scholar 

  47. S. S. Sawant, B. K. Salunke and B. S. Kim, Curr. Microbiol., 69, 832 (2014).

    Article  CAS  Google Scholar 

  48. M. Lemoigne, Bull. Soc. Chim. Biol., 8, 770 (1926).

    CAS  Google Scholar 

  49. A.A. Shah, F. Hasan, A. Hameed and S. Ahmed, Biotechnol. Adv., 26, 246 (2008).

    Article  CAS  Google Scholar 

  50. S. Khanna and A. K. Srivastava, Process Biochem., 40, 607 (2005).

    Article  CAS  Google Scholar 

  51. J. Lu, R. C. Tappel and C.T. Nomura, J. Macromol. Sci.-Pol. R., 49, 226 (2009).

    CAS  Google Scholar 

  52. M. Zinn and R. Hany, Adv. Eng. Mater., 7, 408 (2005).

    Article  CAS  Google Scholar 

  53. I.F. Escapa, V. Morales, V.P. Martino, E. Pollet, L. Avérous, J.L. García and M.A. Prieto, Appl. Microbiol. Biotechnol., 89, 1583 (2011).

    Article  CAS  Google Scholar 

  54. G.Y.A. Tan, C. L. Chen, L. Li, L. Ge, L. Wang, I. M. N. Razaad, Y. Li, L. Zhao, Y. Mo and J.-Y. Wang, Polymers, 6, 706 (2014).

    Article  Google Scholar 

  55. L. Shang, M. Jiang and H.N. Chang, Biotechnol. Lett., 25, 1415 (2003).

    Article  CAS  Google Scholar 

  56. E. Dawes, Novel biodegradable microbial polymers, Kluwer Academic Publishers, Dordrecht, The Netherlands (1990).

    Book  Google Scholar 

  57. T. Tsuge, K. Yano, S. Imazu, K. Numata, Y. Kikkawa, H. Abe, K. Taguchi and Y. Doi, Macromol. Biosci., 5, 112 (2005).

    Article  CAS  Google Scholar 

  58. R.A. Verlinden, D. J. Hill, M.A. Kenward, C.D. Williams and I. Radecka, J. Appl. Microbiol., 102, 1437 (2007).

    Article  CAS  Google Scholar 

  59. K.D. Pawar, S. Banskar, S.D. Rane, S. S. Charan, G. J. Kulkarni, S. S. Sawant, H.V. Ghate, M. S. Patole and Y. S. Shouche, Microbiol. Open, 1, 415 (2012).

    Article  Google Scholar 

  60. L.E.A. Munoz and M.R. Riley, Biotechnol. Bioeng., 100, 882 (2008).

    Article  CAS  Google Scholar 

  61. D. Gao, Y. Luan, Q. Wang, Q. Liang and Q. Qi, Microb. Cell Fact., 14, 159 (2015).

    Article  Google Scholar 

  62. M.T. Cesário, R.S. Raposo, M.C.M.D. de Almeida, F. van Keulen, B. S. Ferreira and M. M. R. da Fonseca, New Biotechnol., 31, 104 (2014).

    Article  Google Scholar 

  63. S.Y. Lee, Bioprocess Eng., 18, 397 (1998).

    Article  Google Scholar 

  64. L. F. Silva, M. K. Taciro, M. E. M. Ramos, J.M. Carter, J. C. G. Pradella and J. G. C. Gomez, J. Ind. Microbiol. Biotechnol., 31, 245 (2004).

    Article  CAS  Google Scholar 

  65. Y. Zhang, W. Sun, H. Wang and A. Geng, Bioresour. Technol., 147, 307 (2013).

    Article  CAS  Google Scholar 

  66. A. Bera, S. Dubey, K. Bhayani, D. Mondal, S. Mishra and P.K. Ghosh, Int. J. Biol. Macromol., 72, 487 (2015).

    Article  CAS  Google Scholar 

  67. T. Keenan, J. Nakas and S. Tanenbaum, J. Ind. Microbiol. Biotechnol., 33, 616 (2006).

    Article  CAS  Google Scholar 

  68. J.M. Nduko, W. Suzuki, K. Matsumoto, H. Kobayashi, T. Ooi, A. Fukuoka and S. Taguchi, J. Biosci. Bioeng., 113, 70 (2012).

    Article  CAS  Google Scholar 

  69. A. Sathish, K. Glaittli, R. C. Sims and C.D. Miller, J. Polym. Environ., 22, 272 (2014).

    Article  CAS  Google Scholar 

  70. J. Iranmahboob, F. Nadim and S. Monemi, Biomass Bioenerg., 22, 401 (2002).

    Article  CAS  Google Scholar 

  71. S. Larsson, E. Palmqvist, B. Hahn-Hägerdal, C. Tengborg, K. Stenberg, G. Zacchi and N. Nilvebrant, Enzyme Microb. Technol., 24, 151 (1999).

    Article  CAS  Google Scholar 

  72. S.C. Prabu and A.G. Murugesan, Int. J. Environ. Res., 4, 519 (2010).

    Google Scholar 

  73. R. Sidhu, N. Silviya, P. Binod and A. Pandey, Biochem. Eng. J., 78, 67 (2013).

    Article  Google Scholar 

  74. A. Narayanan, V. S. Kumar and K.V. Ramana, Waste Biomass Valorization, 5, 109 (2014).

    Article  CAS  Google Scholar 

  75. V. Gowda and S. Shivakumar, Braz. Arch. Biol. Technol., 57, 55 (2014).

    Article  CAS  Google Scholar 

  76. J.A. Silva, L.M. Tobella, J. Becerra, F. Godoy and M.A. Martinez, J. Biosci. Bioeng., 103, 542 (2007).

    Article  CAS  Google Scholar 

  77. W. Pan, C.T. Nomura and J. P. Nakas, Bioresour. Technol., 125, 275 (2012).

    Article  CAS  Google Scholar 

  78. M. Lopes, G. Gosset, R. Rocha, J. Gomez and L. Ferreira da Silva, Curr. Microbiol., 63, 319 (2011).

    Article  CAS  Google Scholar 

  79. S. Obruca, P. Benesova, S. Petrik, J. Oborna, R. Prikryl and I. Marova, Process Biochem., 49, 1409 (2014).

    Article  CAS  Google Scholar 

  80. D. Van-Thuoc, J. Quillaguaman, G. Mamo and B. Mattiasson, J. Appl. Microbiol., 104, 420 (2008).

    CAS  Google Scholar 

  81. R. Davis, R. Kataria, F. Cerrone, T. Woods, S. Kenny, A. O’Donovan, M. Guzik, H. Shaikh, G. Duane, V.K. Gupta, M.G. Tuohy, R. B. Padamatti, E. Casey and K. E. O’Connor, Bioresour. Technol., 150, 202 (2013).

    Article  CAS  Google Scholar 

  82. J. Yu and H. Stahl, Bioresour. Technol., 99, 8042 (2008).

    Article  CAS  Google Scholar 

  83. D. Radhika and A. G. Murugesan, Bioresour. Technol., 121, 83 (2012).

    Article  CAS  Google Scholar 

  84. S. Zhang, O. Norrlow, J. Wawrzynczyk and E. S. Dey, Appl. Environ. Microbiol., 70, 6776 (2004).

    Article  CAS  Google Scholar 

  85. L. Salamanca-Cardona, C. S. Ashe, A. J. Stipanovic and C.T. Nomura, Appl. Microbiol. Biotechnol., 98, 831 (2014).

    Article  CAS  Google Scholar 

  86. T. Bowers, A. Vaidya, D. A. Smith and G. J. Llooyd-Jones, J. Chem. Technol. Biotechnol., 89, 1030 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Additional information

Beom Soo Kim is a Professor of Chemical Engineering at Chungbuk National University in Korea. He received his B.S. degree (Seoul National University, Korea), M.S. degree (KAIST, Korea), and Ph.D. degree (KAIST, Korea) all in Chemical Engineering and was a postdoctoral fellow at MIT. He was a visiting scholar at the University of Michigan, Ann Arbor and National Center for Agricultural Utilization Research, United States Department of Agriculture. His research interests include high cell density culture, biodegradable polymers, polyhydroxyalkanoates, nanoparticles, and biorefinery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, S.S., Salunke, B.K., Tran, T.K. et al. Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean J. Chem. Eng. 33, 1505–1513 (2016). https://doi.org/10.1007/s11814-016-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0019-4

Keywords

Navigation