Skip to main content
Log in

Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A semi-empirical model has been applied to predict the permeate flux and mass transfer resistances during the cross flow nanofiltration of molasses wastewater in flat-sheet module. The model includes laminar flow regime as well as flow in presence of gas sparging at two different gas velocities. Membrane hydraulic resistance (R m ), osmotic pressure resistance (R osm ) and the concentration polarization resistance (R cp ) were considered in series. The concentration polarization resistance was correlated to the operating conditions, namely, the feed concentration, the trans-membrane pressure difference and the cross flow velocity for a selected range of experiments. There was an appreciable reduction of concentration polarization resistance R spar cp in presence of gas sparging. Both the concentration polarization resistance R lam cp and osmotic pressure resistance R osm decreased with cross-flow velocity, but increased with feed concentration and the operating pressure. Experimental and theoretical permeate flux values as a function of cross flow velocity for both the cases, in the presence and absence of gas sparging, were also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Mayer, R. Braun and W. Fuchs, J. Membr. Sci., 277, 258 (2006).

    Article  CAS  Google Scholar 

  2. T. Imasaka, N. Kanekuni, H. So and S. Yoshini, J. Ferment. Bioeng., 68, 200 (1989). AWWA, Membrane Technology Research Committee, J. Am. Water Works Asso., 97, 79 (2005).

    Article  CAS  Google Scholar 

  3. Z. F. Cui and K. I. T. Wright, J. Membr. Sci., 90, 183 (1994).

    Article  CAS  Google Scholar 

  4. S. R. Bellara, Z. F. Cui and D. S. Pepper, J. Membr. Sci., 121, 175 (1996).

    Article  CAS  Google Scholar 

  5. S. Chang and A. G. Fane, J. Membr. Sci., 184, 221 (2001).

    Article  CAS  Google Scholar 

  6. W. Youravong, Z. Li and A. Laorko, J. Food Eng., 96, 427 (2010).

    Article  CAS  Google Scholar 

  7. T.-W. Cheng and L.-N. Li, Separ. Purif. Technol., 55, 50 (2007).

    Article  CAS  Google Scholar 

  8. M.-J. Um, S.-H. Yoon, C.-H. Lee, K.-Y. Chung and J.-J. Kim, Water Res., 35, 4095 (2001).

    Article  CAS  Google Scholar 

  9. S. Laborie, C. Cabassud, L. Durand-Bourlier and J. M. Laine, Chem. Eng. Sci., 54, 5723 (1999).

    Article  CAS  Google Scholar 

  10. Z. F. Cui, S. Chang and A.G. Fane, J. Membr. Sci., 221, 1 (2003).

    Article  CAS  Google Scholar 

  11. S. Mahimairaja and N. S. Bolan, In: Third Australian and New Zealand Soil Science Societies Joint Conference 2004, Sydney, Australia, 5–9 December (2004).

    Google Scholar 

  12. A. Drews, H. Prieske, E.-L. Meyer, G. Senger and M. Kraume, Desalination, 250, 1083 (2010).

    Article  CAS  Google Scholar 

  13. T. Taha and Z. F. Cui, J. Membr. Sci., 210, 13 (2002).

    Article  CAS  Google Scholar 

  14. B.G. Fulton, J. Redwood, M. Tourais and P. R. Berube, Desalination, 281, 128 (2011).

    Article  CAS  Google Scholar 

  15. C.C.V. Chan, P. R. Berube and E. R. Hall, J. Membr. Sci., 297, 104 (2007).

    Article  CAS  Google Scholar 

  16. F. FitzGibbon, D. Singh, G. McMullan and R. Marchant, Proc. Biochem., 33, 799 (1998).

    Article  CAS  Google Scholar 

  17. S. K. Nataraj, K. M. Hosamani and T.M. Aminabhavi, Water Res., 40, 2349 (2006).

    Article  CAS  Google Scholar 

  18. U. K. Rai, M. Muthukrishnan and B. K. Guha, Desalination, 230, 70 (2008).

    Article  CAS  Google Scholar 

  19. X.-L. Wang, C. Zhang and P. Ouyang, J. Membr. Sci., 204, 271 (2002).

    Article  CAS  Google Scholar 

  20. D. E. Wiley, C. J. D. Fell and A. G. Fane, Desalination, 52, 249 (1985).

    Article  CAS  Google Scholar 

  21. S. De and P. K. Bhattacharya, J. Membr. Sci., 128, 119 (1997).

    Article  CAS  Google Scholar 

  22. V. S. Minnikanti, S. DasGupta and S. De, J. Membr. Sci., 157, 227 (1999).

    Article  CAS  Google Scholar 

  23. G. B. van der Berg, I.G. Racz and C. A. Smolders, J. Membr. Sci., 47, 25 (1989).

    Article  Google Scholar 

  24. R. E. Treybal, Mass transfer operations, 3rd Ed., McGraw Hill, New Delhi, 34 (1981).

    Google Scholar 

  25. K. Auddy, S. De and S. DasGupta, Sep. Purif. Technol., 43, 85 (2005).

    Article  CAS  Google Scholar 

  26. T. Y. Chiu and A. E. Jame, J. Membr. Sci., 281, 274 (2006).

    Article  CAS  Google Scholar 

  27. APHA, American Public Health Association, (2005) Standard methods for the examination of water and waste-water, In: Clesceri LS, Greenberg AE, Eaton AD, Editors, Washington, D.C.ISBN 0-8755-3047-8.

  28. G. Ducom and C. Cabassud, Desalination, 156, 267 (2003).

    Article  CAS  Google Scholar 

  29. Q.Y. Li, R. Ghosh, S. R. Bellara, Z. F. Cui and D. S. Pepper, Separ. Purif. Technol., 14, 79 (1998).

    Article  Google Scholar 

  30. A. Laorko, Z. Li, S. Tongchitpakdee and W. Youravong, Sep. Purif. Technol., 80, 445 (2011).

    Article  CAS  Google Scholar 

  31. K. Auddy, S. De and S. DasGupta, Sep. Purif. Technol., 40, 31 (2004).

    Article  CAS  Google Scholar 

  32. P. Banerjee, S. Dasgupta and S. De, J. Hazard. Mater., 140, 95 (2007).

    Article  CAS  Google Scholar 

  33. I. Koyuncu, D. Topacik and M. R. Wiesner, Water Res., 38, 432 (2003).

    Article  Google Scholar 

  34. N. K. Saha, M. Balakrishnan and V. S. Batra, Resour. Conserv. Recycl., 43, 163 (2005).

    Article  Google Scholar 

  35. CPCB (Central Pollution Control Board), Pollution control acts, rules, notifications issued thereunder, Vol. I. New Delhi: Central Pollution Control Board, Ministry of Environment and Forests, p. 311–2, 501 (1998).

    Google Scholar 

  36. E.M.V. Hoek, S. Bhattacharjee and M. Elimelech, Langmuir, 19, 4836 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T.M., Nath, K. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration. Korean J. Chem. Eng. 31, 1865–1876 (2014). https://doi.org/10.1007/s11814-014-0139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0139-7

Keywords

Navigation