Skip to main content
Log in

Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel catalyst CeO2/ATP was developed to remove Hg0 from coal fired gas. This is new way to use the facile, cheap and larger BET specific surface area catalyst attapulgite (ATP) as support to remove Hg0 from coal fired gas. The Hg0 removal and oxidation efficiency of CeO2/ATP (1: 1) is up to 97.75% and 92.23% at 200 °C, respectively. We also found that ATP plays an important role in improving the catalyst activity of CeO2/ATP, which can make CeO2/ATP have more stable catalyst activity at broader temperature range and obtain lower optimum activity temperature. Other influencing factors, such as temperature and flue gas environment (SO2, Cl2, NO), are also investigated in order to get a clear understanding of the experiment. The formation mechanisms are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations Environment Programme (UNEP), Global Mercury Assessment, UNEP Chemicals, Geneva, Switzerland, December, 2002.

    Google Scholar 

  2. J. H. Pavlish, E.A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal and S.A. Benson, Fuel Process. Technol., 82, 89 (2003).

    Article  CAS  Google Scholar 

  3. A. A. Presto and E. J. Granite, Environ. Sci. Technol., 40, 5601 (2006).

    Article  CAS  Google Scholar 

  4. U.S. Environmental Protection Agency, Mercury and Air Toxics Standards (MATS), http://www.epa.gov/airquality/powerplanttoxics/actions.html, Accessed on 24.02.14.

  5. State Environmental Protection Administration of China (SEPA), Emission standard of air pollution for thermal power plants, GB 13223-2011, SEPA, Beijing (2011).

    Google Scholar 

  6. K. C. Galbreath and C. J. Zygarlicke, Fuel Process. Technol., 65, 289 (2000).

    Article  Google Scholar 

  7. Z. Qu, N. Q. Yan, P. Liu, J. P. Jia and S. J. Yang, J. Hazard. Mater., 183, 132 (2010).

    Article  CAS  Google Scholar 

  8. H. L. Li, C.Y. Wu, Y. Li, L. Q. Li, Y. C. Zhao and J.Y. Zhang, Chem. Eng. J., 219, 319 (2013).

    Article  CAS  Google Scholar 

  9. L. Li, P. M. Sreekanth, P.G. Smimiotis, S.W. Thiel and N.G. Pinto, Energy Fuels, 22, 2299 (2008).

    Article  Google Scholar 

  10. F. H. Kong, J. R. Qiu, H. Liu, R. Zhao and Z. H. Ai, J. Environ. Sci., 23, 699 (2011).

    Article  CAS  Google Scholar 

  11. A. Yamaguchi, H. Akiho and S. Ito, Powder Technol., 180, 222 (2008).

    Article  CAS  Google Scholar 

  12. S. He, J. S. Zhou, Y. Q. Zhu, Z. Y. Luo, M. J. Ni and K. F. Cen, Energy Fuels, 23, 253 (2009).

    Article  CAS  Google Scholar 

  13. L. H. Tian, C. T. Li, Q. Li, G. M. Zeng, Z. Gao, S. H. Li and X. P. Fan, Fuel, 88, 1687 (2009).

    Article  CAS  Google Scholar 

  14. X. P. Fan, C. T. Li, G. M. Zeng, Z. Gao, L. Chen, W. Zhang and H. L. Gao, Energy Fuels, 24, 4250 (2010).

    Article  CAS  Google Scholar 

  15. X. Wen, C. Li, X. Fan, H. Gao, W. Zhang, L. Chen, G. Zeng and Y. Zhao, Energy Fuels, 25, 2939 (2011).

    Article  CAS  Google Scholar 

  16. W. H. Hou, J. S. Zhou, P. Qi, X. Gao and Z.Y. Luo, Chem. Eng. J., 241, 131 (2014).

    Article  CAS  Google Scholar 

  17. H. L. Li, C.Y. Wu, L. Q. Li, Y. Li, Y. C. Zhao and J.Y. Zhang, Fuel, 113, 726 (2013).

    Article  CAS  Google Scholar 

  18. Q. Wan, L. Duan, K. B. He and J. H. Li, Chem. Eng. J., 170, 512 (2011).

    Article  CAS  Google Scholar 

  19. D. Alami, Environ. Eng. Res., 18, 211 (2013).

    Article  Google Scholar 

  20. J. L. Cao, G. S. Shao, Y. Wang, Y. P. Liu and Z.Y. Yuan, Catal. Commun., 9, 2555 (2008).

    Article  CAS  Google Scholar 

  21. M. S. Barrios, L.V. F. González, M. A.V. Rodríguez and J. M. M. Pozas, Appl. Clay Sci., 10, 247 (1995).

    Article  Google Scholar 

  22. Z.G. Chen, F. Chen, X. Z. Li, X.W. Lu, C.Y. Ni and X. B. Zhao, J. Rare Earths, 28, 566 (2010).

    Article  CAS  Google Scholar 

  23. H. Chen and A. Q. Wang, J. Colloid Interf. Sci., 307, 309 (2007).

    Article  CAS  Google Scholar 

  24. J. H. Huang, Y. F. Liu, Y. Liu and X.G. Wang, J. Amer. Oil Chem. Soc., 84, 687 (2007).

    Article  CAS  Google Scholar 

  25. D. F. Zhao, J. Zhou and N. Liu, Mater. Charact., 58, 249 (2007).

    Article  CAS  Google Scholar 

  26. D. M. A. Melo, J. A. C. Ruiz, M. A. F. Melo, E.V. Sobrinho and A. E. Martinelli, J. Alloy Compd., 344, 352 (2002).

    Article  Google Scholar 

  27. S. D. Miao, Z. M. Liu, Z. F. Zhang, B. X. Han, Z. J. Miao, K. L. Ding and G. M. An, J. Phys. Chem. C, 111, 2185 (2007).

    Article  CAS  Google Scholar 

  28. D. F. Zhao, J. Zhou and N. Liu, Mater. Sci. Eng A, 431, 256 (2006).

    Article  Google Scholar 

  29. D. M. A. Melo, J. A. C. Ruiz, M. A. F. Melo, E.V. Sobrinho and M. Schmall, Micropor. Mesopor. Mater., 38, 345 (2000).

    Article  CAS  Google Scholar 

  30. J. L. Cao, G. S. Shao, Y. Wang, Y. P. Liu and Z.Y. Yuan, Catal. Commun., 9, 2555 (2008).

    Article  CAS  Google Scholar 

  31. Y. S. Liu, P. Liu, Z. X. Su, F. S. Li and F. S. Wen, Appl. Surf. Sci., 255, 2020 (2008).

    CAS  Google Scholar 

  32. L. L. Zhang, F. J. Lv, W.G. Zhang, R. Q. Li, H. Zhong, Y. J. Zhao, Y. Zhang and X. J. Wang, J. Hazard. Mater., 171, 294 (2009).

    Article  CAS  Google Scholar 

  33. S. Gnanam and V. Rajendran, J. Sol-Gel Sci. Technol., 58, 62 (2011).

    Article  CAS  Google Scholar 

  34. X. Z. Li, C.Y. Ni, C. Yao and Z.G. Chen, Appl. Catal. B: Environ., 117, 118 (2012).

    Article  Google Scholar 

  35. G. Zhang, Z. L. He and W. Xu, Chem. Eng. J., 183, 315 (2012).

    Article  CAS  Google Scholar 

  36. D. S. Zhang, H. X. Fu, L.Y. Shi, C. S. Pan, Q. Li, Y. L. Chu and W. J. Yu, Inorg. Chem., 46, 2446 (2007).

    Article  CAS  Google Scholar 

  37. H. L. Li, Y. Li, C.Y. Wu and J.Y. Zhang, Chem. Eng. J., 169, 186 (2011).

    Article  CAS  Google Scholar 

  38. G. A. Norton, H. Q. Yang, R. C. Brown and D. L. Laudal, Fuel, 82, 107 (2003).

    Article  CAS  Google Scholar 

  39. S. J. Miller, G. E. Dunham, E. S. Olson and T.D. Brown, Fuel Process. Technol., 65, 343 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Lu, Y., Tang, Z. et al. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite. Korean J. Chem. Eng. 31, 1405–1412 (2014). https://doi.org/10.1007/s11814-014-0074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0074-7

Keywords

Navigation