Skip to main content

Advertisement

Log in

Tungsten oxides supported on nano-size zirconia for cyclic production of syngas and hydrogen by redox operations

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

For cyclic production of syngas and H2 by redox (methane reforming-water splitting) operations, samples of tungsten oxides supported on nano-size zirconia (WO3/n-ZrO2) were investigated at 1,223 and 1,273 K and compared with those on micron-size zirconia (WO3/µ-ZrO2). The reduction characteristics of WO3/n-ZrO2 observed in this study were consistent with those of WO3/µ-ZrO2 reported in the literature. Specifically, the reduction process comprised three stages, the syngas production rate decreased as WO3 content increased, and the overall degree of reduction gradually decreased with repeated cycles. However, there were differences due to the smaller particle size, namely, WO3/n-ZrO2 yielded a higher syngas production rate and a lower H2/(CO+CO2) ratio. In addition, the hydrogen yield by water splitting was significantly lower than the amount expected based on the overall degree of WO3 reduction. The H2/(CO+CO2) ratio also gradually decreased with repeated cycles. These results were mainly attributed to rapid sintering of WO3/n-ZrO2, which gradually began to resemble WO3/µ-ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Kwak, G.Y. Han and K. J. Yoon, Int. J. Hydrog. Energy, 38, 8293 (2013).

    Article  CAS  Google Scholar 

  2. A. Kogan, Int. J. Hydrog. Energy, 23, 89 (1998).

    Article  CAS  Google Scholar 

  3. T. Kodama, S. Miura, T. Shimizu and Y. Kitayama, Energy, 11, 1019 (1997).

    Article  Google Scholar 

  4. T. Kodama, Progr Energy Combust Sci., 29, 567 (2003).

    Article  CAS  Google Scholar 

  5. T. Nakamura, Solar Energy, 19, 467 (1977).

    Article  CAS  Google Scholar 

  6. M. Lundberg, Int. J. Hydrog. Energy, 18, 369 (1993).

    Article  CAS  Google Scholar 

  7. A. Steinfeld, A. Frei, P. Kuhn and D. Wuillemin, Int. J. Hydrog. Energy, 20, 793 (1995).

    Article  CAS  Google Scholar 

  8. S. Abanades and G. Flamant, Solar Energy, 80, 1611 (2006).

    Article  CAS  Google Scholar 

  9. T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou and N. Satou, Solar Energy, 78, 623 (2005).

    Article  CAS  Google Scholar 

  10. T. Kodama, N. Gokon and R. Yamamoto, Solar Energy, 82, 73 (2008).

    Article  CAS  Google Scholar 

  11. S. Abanades, A. Legal, A. Cordier, G. Peraudeau, G. Flamant and A. Julbe, J. Mater. Sci., 45, 4163 (2010).

    Article  CAS  Google Scholar 

  12. H. Kaneko, S. Taku, Y. Naganuma, T. Ishihara, N. Hasegawa and Y. Tamaura, J. Solar Energy Eng., 132, 0212021 (2010).

    Article  Google Scholar 

  13. A. Aoki, H. Ohtake, T. Shimizu, Y. Kitayama and T. Kodama, Energy, 25, 201 (2000).

    Article  CAS  Google Scholar 

  14. V. Galvita, T. Hempel, H. Lorenz, L. K. Rihko-Struckmann and K. Sundmacher, Ind. Eng. Chem. Res., 47, 303 (2008).

    Article  CAS  Google Scholar 

  15. C. D. Bohn, J. P. Cleeton, C. R. Müller, S.Y. Chuang, S. A. Scott and J. S. Dennis, Energy Fuels, 24, 4025 (2010).

    Article  CAS  Google Scholar 

  16. A. M. Kierzkowska, C. D. Bohn, S. A. Scott, J. P. Cleeton, J. S. Dennis and C. R. Müller, Ind. Eng. Chem. Res., 49, 5358 (2010).

    Article  Google Scholar 

  17. A. Steinfeld, P. Kuhn and J. Karni, Energy, 18, 239 (1993).

    Article  CAS  Google Scholar 

  18. A. Steinfeld, M. Brack, A. Meier, A. Weidenkaff and D. Wuillemin, Energy, 23, 803 (1998).

    Article  CAS  Google Scholar 

  19. K. Otsuka, Y. Wang and M. Nakamura, Appl. Catal. A, 183, 317 (1999).

    Article  CAS  Google Scholar 

  20. T. Kodama, T. Shimizu, T. Satoh, M. Nakata and K. I. Shimizu, Solar Energy, 73, 363 (2002).

    Article  CAS  Google Scholar 

  21. K. S. Go, S. R. Son and S. D. Kim, Int. J. Hydrog. Energy, 33, 5986 (2008).

    Article  CAS  Google Scholar 

  22. K.-S. Kang, C.-H. Kim, W.-C. Cho, K.-K. Bae, S.-W. Woo and C.-S. Park, Int. J. Hydrog. Energy, 33, 4560 (2008).

    Article  CAS  Google Scholar 

  23. K.-S. Kang, C.-H. Kim, K.-K. Bae, W.-C. Cho, W.-J. Kim, Y.-H. Kim, S.-H. Kim and C.-S. Park, Int. J. Hydrog. Energy, 35, 568 (2010).

    Article  CAS  Google Scholar 

  24. H. H. Jeong, J. H. Kwak, G.Y. Han and K. J. Yoon, Int. J. Hydrog. Energy, 36, 15221 (2011).

    Article  CAS  Google Scholar 

  25. T. Kodama, H. Ohtake, S. Matsumoto, A. Aoki, T. Shimizu and Y. Kitayama, Energy, 25, 411 (2000).

    Article  CAS  Google Scholar 

  26. T. Shimizu, K. Shimizu, Y. Kitayama and T. Kodama, Solar Energy, 71, 315 (2001).

    Article  CAS  Google Scholar 

  27. T. Kodama, T. Shimizu, T. Satoh and K. I. Shimizu, Energy, 28, 1055 (2003).

    Article  CAS  Google Scholar 

  28. A. Sim, N.W. Cant and D. L. Trimm, Int. J. Hydrog. Energy, 35, 8953 (2010).

    Article  CAS  Google Scholar 

  29. J. H. Kwak, Ph.D. Thesis, Sungkyunkwan University (2012).

  30. N. F. Fahim and T. Sekino, Chem. Mater., 21, 1697 (2009).

    Article  Google Scholar 

  31. L. Guo, J. Zhao, X. Wang, R. Xu and Y. Li, J. Solid State Electrochem., 13, 1321 (2009).

    Article  CAS  Google Scholar 

  32. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Curr. Opin. Solid State Mater. Sci., 11, 3 (2007).

    Article  CAS  Google Scholar 

  33. B. D. Cullity, Elements of X-ray diffraction, 2 nd Ed., Addison-Wesley, Reading, MA, 102 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki June Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, J.H., Han, G.Y., Bae, J.W. et al. Tungsten oxides supported on nano-size zirconia for cyclic production of syngas and hydrogen by redox operations. Korean J. Chem. Eng. 31, 961–971 (2014). https://doi.org/10.1007/s11814-014-0008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0008-4

Keywords

Navigation