Skip to main content
Log in

Statistical optimization of mixture ratio and particle size for dry co-digestion of food waste and manure by response surface methodology

  • IBS 2012 (15th International Biotechnology Symposium)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Response surface methodology has been widely applied to optimize the process. However, it was rarely applied to dry digestion. We used central composite design to optimize the anaerobic dry co-digestion of food waste and manure. Mixture ratio and particle size of food waste and manure were selected as independent variables, and target surface response was the methane production yield (MPY). BMP tests were conducted, and MPY was fitted by a secondorder polynomial quadratic model, which was found to be significant with higher coefficient (R2=0.98). As results of F-value analysis, the mixture ratio was found to be more important than particle size. Finally, the optimum conditions of mixture ratio (food waste:manure=5.79: 4.21) corresponding to 15.6 of C/N ratio and particle size 1.12 cm were determined. In addition, 313mL CH4/g VS added of MPY was anticipated under optimum conditions with 94.4% of desirability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Management of organic wastes, Ministry of Environment, Korea (2009).

  2. J. Mata-Alvarez, S. Mace and P. Llabres, Bioresour. Technol., 74(1), 3 (2000).

    Article  CAS  Google Scholar 

  3. J. Lu, H. N. Gavala, I.V. Skiadas, Z. Mladenovska and B. K. Ahring, J. Environ. Manage., 88(4), 1361 (2008).

    Article  Google Scholar 

  4. L. Luning, E. H. M. Van Zundert and A. J.K. Brinkmann, Water Sci. Technol., 48(4), 15 (2003).

    CAS  Google Scholar 

  5. Y. Li, S.Y. Park and J. Zhu, Renew. Sust. Energy Rev., 15, 821 (2011).

    Article  CAS  Google Scholar 

  6. I. S. Kim, D. H. Kim and S. H. Hyun, Water Sci. Technol., 41(3), 67 (2000).

    CAS  Google Scholar 

  7. S. Sung and T. Liu, Chemosphere, 53, 43 (2003).

    Article  CAS  Google Scholar 

  8. W. C. Kuo and K.Y. Cheng, Bioresour. Technol., 98(9), 1805 (2007).

    Article  CAS  Google Scholar 

  9. H. B. Nielsen and I. Angelidaki, Bioresour. Technol., 99, 7995 (2008).

    Article  CAS  Google Scholar 

  10. A. Mshandete, L. Bjornsson, A. K. Kivalisi, M. S. T. Rubindamayugi and B. Mattiasson, Renew. Energy, 31, 2385 (2006).

    Article  CAS  Google Scholar 

  11. K. Izumi, Y. K. Okishio, N. Nagao, C. Niwa, S. Yamamoto and T. Toda, Int. Biodeter. Biodegr., 64(7), 601 (2010).

    Article  CAS  Google Scholar 

  12. B. Riano, B. Molinuevo and M. C. Garcia-Gonzalez, Bioresour. Technol., 102, 4131 (2011).

    Article  CAS  Google Scholar 

  13. C. Gonzalez-Fernandez, B. Molinuevo-Salces and M. C. Garcia- Gonzalez, Appl. Energy, 88, 3448 (2011).

    Article  CAS  Google Scholar 

  14. Y. Li, X. L. Yan, J. P. Fan, J. H. Zhu and W.B. Zhou, Bioresour. Technol., 102, 6458 (2011).

    Article  CAS  Google Scholar 

  15. APHA, AWWA and WEF, 20th Ed. Baltimore, American Public Health Association, 2, 57 (2008).

    Google Scholar 

  16. A. Jeihanipour, C. Niklasson and M. J. Taherzadeh, Process Biochem., 46, 1509 (2011).

    Article  CAS  Google Scholar 

  17. C. Y. Lin and C. H. Lay, Int. J. Hydrog. Energy, 29, 41 (2004).

    Article  CAS  Google Scholar 

  18. D. H. Kim, S. H. Kim, K. Y. Kim and H. S. Shin, Int. J. Hydrog. Energy, 35, 1590 (2010).

    Article  CAS  Google Scholar 

  19. T. Sreethawong, S. Chatsiriwatana, P. Rangsunvigit and S. Chavadej, Int. J. Hydrog. Energy, 35, 4092 (2010).

    Article  CAS  Google Scholar 

  20. H. Bouallagui, H. Lahdheb, E. Ben Romdan, B. Rachdi and M. Hamdi, J. Environ. Manage., 90, 1844 (2009).

    Article  CAS  Google Scholar 

  21. D. M. Sievers and D. E. Brune, Am. Soc. Agr. Biol. Eng., 21(3), 537 (1978).

    Google Scholar 

  22. S. K. Sharma, I. M. Mishra, M. P. Sharma and J. S. Saini, Biomass, 17, 251 (1988).

    Article  CAS  Google Scholar 

  23. H. El-Mashad and R. Zhang, Am. Soc. Agr. Biol. Eng., 50(5), 1815 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Kyung Cho.

Additional information

This work was presented at the 15th International Biotechnology Symposium held at Daegu, Korea, Sep. 16–21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, SK., Kim, DH., Yun, YM. et al. Statistical optimization of mixture ratio and particle size for dry co-digestion of food waste and manure by response surface methodology. Korean J. Chem. Eng. 30, 1493–1496 (2013). https://doi.org/10.1007/s11814-013-0096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0096-6

Key words

Navigation