Skip to main content
Log in

The solids concentration distribution in the deep cone thickener: A pilot scale test

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cemented backfill or surface deposition of paste tailings is increasingly being considered as a simple and effective means of reducing the hazards of conventional slurry deposition and recovering water for recycle. Although gravity thickening has been widely used in the mineral industry to increase the solids concentration of tailings, the accurate prediction of the concentration distribution in three-dimensions and discontinuous operational state has proven to be difficult. We investigated the axial and radial solids concentration distribution at discontinuous state in a pilot deep cone thickener as a function of bed height and residence time. The feed flux of lead/zinc tailings was 0.254 t·h−1· m−2 with a flocculant (high molecular weight anionic polyacrylamide) dose of 20 g/t. The thickened solids bed was sheared by a rotating rake at a rate of 0.2 rpm. The underflow was recirculated at a flux of 0.5 t·h−1·m−2, which can introduce additional shear stresses into the bed. The results of the bed density profile showed that, beside the clarification zone, the area below the feedwell could be divided into four zones: the dilution zone caused by free settling and diffusing action, the hindered settling zone in which the concentration was lower than the gel point, the unraked bed zone with a large concentration gradient and, finally, the raking zone with the highest slurry concentration and lower concentration gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Z. Zhang, China Mine Engineering, 39(2), 49 (2010).

    CAS  Google Scholar 

  2. A. X. Wu, Granular dynamic theory and its applications, Metallurgical Industry Press & Springer (2008).

  3. R.G. Kretser, P. J. Scales and D.V. Boger, British Society of Rheology, 12, 125 (2003).

    Google Scholar 

  4. X. H. Liu, A. X. Wu and H. J. Wang, Metal Mine, 9, 38 (2009).

    CAS  Google Scholar 

  5. H. Z. Jiao, H. J. Wang and A. X. Wu, Journal of University of Science and Technology Beijing, 6, 702 (2010).

    Google Scholar 

  6. Y.G. Zhai, A. X. Wu and H. J. Wang, Journal of University of Science and Technology Beijing, 7, 629 (2011).

    Google Scholar 

  7. S. P. Usher, R. Spehar and P. J. Scales, Chem. Eng. J., 151, 202 (2009).

    Article  CAS  Google Scholar 

  8. R. Bürger, K. H. Karlsen and J. Towers, Chem. Eng. J., 111, 119 (2005).

    Article  Google Scholar 

  9. P. Mpofu, J.A. Mensah and J. Ralston, J. Colloid Interface Sci., 271, 145 (2004).

    Article  CAS  Google Scholar 

  10. M. S. Zbik, R. Smart and G. E. Morris, J. Colloid Interface Sci., 328, 73 (2008).

    Article  CAS  Google Scholar 

  11. B. Braggs, D. Fornasiero and J. Ralston, Clays Clay Minerals, 2, 123 (1994).

    Article  Google Scholar 

  12. E. Tombaz and M. Szekeres, Appl. Clay Sci., 34, 105 (2006).

    Article  Google Scholar 

  13. J. H. Du, R. A. Pushkarova and R. St. C. Smart, Int. J. Miner. Process, 93, 66 (2009).

    Article  CAS  Google Scholar 

  14. P.T. Shannon, R. D. Dehaas and E. P. Stroupe, Ind. Eng. Chem. Fundamentals, 3, 250 (1964).

    Article  CAS  Google Scholar 

  15. E.M. Tory and P. T. Shannon, Ind. Eng. Chem. Fundamentals, 4, 194 (1965).

    Article  CAS  Google Scholar 

  16. K. A. Landman, L. R. White and R. Buscall, AIChE J., 34, 239 (1988).

    Article  CAS  Google Scholar 

  17. S. P. Usher. Suspension dewatering characterization and optimization, P.h. D. Thesis, The University of Melbourne, Australia (2002).

    Google Scholar 

  18. K. A. Landman, L. R. White and M. Eberl, Adv. Colloid Interface Sci., 51, 175 (1994).

    Article  CAS  Google Scholar 

  19. B. Gladman, R.G. Kretser and M. Rudman, Chem. Eng. Res. Design, 83, 1 (2005).

    Article  Google Scholar 

  20. R. Bürger, S. Evje and K.H. Karlsen, Chem. Eng. J., 80, 91 (2000).

    Article  Google Scholar 

  21. H. S. Coe and G. H. Clevenger, Trans. AIME, 55, 356 (1916).

    Google Scholar 

  22. W. Wang and J. P. Tan, Mining and Metallurgical Engineering, 1, 44 (2004).

    Google Scholar 

  23. R. Buscall and L. R. White, J. Chem. Soc., Faraday Trans., 83, 873 (1987).

    Article  CAS  Google Scholar 

  24. B. R. Gladman, M. Rudman and P. J. Scales, Chem. Eng. Sci., 65, 13 (2010).

    Google Scholar 

  25. B. B.G. van Deventer, S. P. Usher, A. Kumar, M. Rudman and P. J. Scales, Chem. Eng. J., 171, 141 (2011).

    Article  Google Scholar 

  26. S. P. Usher and P. J. Scales, Chem. Eng. J., 111(2–3), 253 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, H., Wu, A., Wang, H. et al. The solids concentration distribution in the deep cone thickener: A pilot scale test. Korean J. Chem. Eng. 30, 262–268 (2013). https://doi.org/10.1007/s11814-012-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0211-0

Key words

Navigation