Skip to main content
Log in

Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Precipitation is a simple, efficient method for separating and recovering lactic acid in the form of calcium lactate from fermentation broth by adding sulfuric acid. Major operating parameters of the recovery step as well as the temperature of concentration of the recovered lactic acid solution and the type and amount of adsorbent used for pigment (color) removal were optimized. When the molar ratio of calcium lactate to sulfuric acid was 1: 1 and the pH was increased to a value greater than the pKa (3.86), calcium sulfate was precipitated and could be removed more effectively, allowing for more efficient separation and recovery of supernatant lactic acid. Precipitation could be facilitated by adding calcium lactate solution with mixing (up to 220 rpm) and was completed in over 18 h. The optimal temperature for the concentration of lactic acid recovered from the supernatant after removing the precipitated calcium sulfate was found to be 90 °C in terms of the time required for concentration and the stability of the product. Activated carbon (SX-PLUS, 9 g/L) was most effective as an adsorbent for color removal from the recovered lactic acid. Under the optimized precipitation conditions, an overall yield of 92% of lactic acid from fermentation broth could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. H. Lunelli, R. R. Andrade, D. I. Atala, M. R. Wolf Maciel, F. Maugeri Filho and R. Maciel Filho, Appl. Biochem. Biotechnol., 161, 227 (2010).

    Article  CAS  Google Scholar 

  2. M. Sauer, D. Porro, D. Mattanovich and P. Branduardi, Trends Biotechnol., 26, 100 (2008).

    Article  CAS  Google Scholar 

  3. B. Zhao, L. Wang, F. Li, D. Hua, C. Ma, Y. Ma and P. Xu, Bioresour. Technol., 101, 6499 (2010).

    Article  CAS  Google Scholar 

  4. Z. Li, S. Ding, Z. Li and T. Tan, Biotechnol. J., 1, 1453 (2006).

    Article  CAS  Google Scholar 

  5. M. K. H. Liew, S. Tanaka and M. Morita, Desalination, 101, 269 (1995).

    Article  CAS  Google Scholar 

  6. W. Zhao, X. Sun, Q. Wang, H. Ma and Y. Teng, Biomass Bioenerg., 33, 21 (2009).

    Article  CAS  Google Scholar 

  7. E.G. Lee, S. H. Kang, H. H. Kim and Y. K. Chang, Biotechnol. Bioprocess Eng., 11, 313 (2006).

    Article  CAS  Google Scholar 

  8. K.-L. Ho, A. L. Pometto III and P. N. Hinz, Appl. Environ. Microbiol., 63, 2533 (1997).

    CAS  Google Scholar 

  9. K. L. Wasewar, A. B. M. Heesink, G. F. Versteeg and V. G. Pangarkar, J. Chem. Technol. Biotechnol., 77, 1068 (2002).

    Article  CAS  Google Scholar 

  10. Y. Seo, W. H. Hong and T.H. Hong, Korean J. Chem. Eng., 16, 556 (1999).

    Article  CAS  Google Scholar 

  11. M. Marinova, G. Kyuchoukov, J. Albet, J. Molinier and G. Malmary, Sep. Purif. Technol., 37, 199 (2004).

    Article  CAS  Google Scholar 

  12. S. S. Yi, Y. C. Lu and G. S. Luo, Sep. Purif. Technol., 60, 308 (2008).

    Article  CAS  Google Scholar 

  13. S. A. Ataei and E. Vasheghani-Farahani, J. Ind. Microbiol. Biotechnol., 35, 1229 (2008).

    Article  CAS  Google Scholar 

  14. S. C. Park, S. M. Lee, Y. J. Kim, W. S. Kim and Y. M. Koo, Korean J. Biotechnol. Bioeng., 21, 199 (2006).

    Google Scholar 

  15. E. N. Kaufman, S. P. Cooper, S. L. Clement and M. H. Little, Appl. Biochem. Biotechnol., 45/46, 605 (1995).

    Article  Google Scholar 

  16. M. Joseph, A. Eyal, C. Riki, B. Hazan and N. J. Starr, US Patent, 7,026,145 B2 (2006).

  17. M. I. González, S. Álvarez, F. A. Riera and R. Álvarez, Ind. Eng. Chem. Res., 45, 3243 (2006).

    Article  Google Scholar 

  18. W. S. Kim and E.K. Lee, Korean J. Biotechnol. Bioeng., 20, 164 (2005).

    Google Scholar 

  19. D. H. Lee, S.G. Kim, S. Mun and J. H. Kim, Process Biochem., 45, 1134 (2010).

    Article  CAS  Google Scholar 

  20. S. H. Pyo H. B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 1985 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, DJ., Choi, K.H., Chang, Y.K. et al. Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J. Chem. Eng. 28, 1969–1974 (2011). https://doi.org/10.1007/s11814-011-0082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0082-9

Key words