Skip to main content

Advertisement

Log in

Characterization of an open biocathode microbial fuel cell for electricity generation and effluent polish

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The application of a biocathode in a microbial fuel cell (MFC) could be an alternative for the abiotic cathode MFCs that use noble metal catalysts and/or artificial mediators. An open biocathode MFC with oxygen reduction was investigated in this study and the roles of microbes in the cathode compartment were characterized. After 50-days operation, the MFC became stable and the power density of the MFC reached 2.55 W/m3 at an influent flowrate of 0.20 mL/min. The concentration of chemical oxygen demand (COD) was significantly reduced from 372 mg/L (in the influent) to 22 mg/L (in the final effluent) at an influent flowrate of 0.20 mL/min. Microbial community analysis demonstrated that four major groups of the clones were identified, where 28 clone types were derived from the cathode microorganisms, which included proteobacteria, Firmicutes, Bacteroidetes and unclassified bacteria. Among these phylatypes, Deltaproteobacteria was the most abundant division with 25.0% of total clones, which plays important roles in the cathodic electron transfer process. The presence of symmetric peaks could be detected in the effluent of the cathode compartment, which confirmed that the possible electron mediators were excreted by cathodic bacteria involved in the electron transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Angenent, K. Karim, M.H. Al-Dahhan, B.A. Wrenn and R. Domiguez-Espinosa, Trends Biotechnol., 22, 477 (2004).

    Article  CAS  Google Scholar 

  2. B.H. Kim, I. S. Chang and G. M. Gadd, Appl. Microbiol. Biot., 76, 485 (2007).

    Article  CAS  Google Scholar 

  3. B. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, Eviron. Sci. Technol., 40, 5181 (2006).

    Article  CAS  Google Scholar 

  4. K. Rabaey, W. Ossieur, M. Verhaege and W. Verstraete, Water Sci. Technol., 52, 515 (2005).

    CAS  Google Scholar 

  5. L.M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D.R. Bond, D.A. Lowy, K. Pilobello, S. J. Fertig and D. R. Lovely, Nat. Biotechnol., 20, 821 (2002).

    CAS  Google Scholar 

  6. S. Freguia, K. Rabaey, Z. Yuan and J. Keller, Water Res., 42, 1387 (2008).

    Article  CAS  Google Scholar 

  7. F. Zhao, F. Harnisch, U. Schrorder, F. Scholz, P. Bogdanoff and I. Herrmann, Eviron. Sci. Technol., 40, 5193 (2006).

    Article  CAS  Google Scholar 

  8. R.A. Bullen, T. C. Arnot, J. B. Lakeman and F.C. Walsh, Biosens. Bioelectron., 21, 2015 (2006).

    CAS  Google Scholar 

  9. F. Kargi and S. Eker, J. Chem. Technol. Biot., 82, 658 (2007).

    Article  CAS  Google Scholar 

  10. B. Logan, S. Cheng, V. Watson and G. Estadt, Eviron. Sci. Technol., 41, 3341 (2007).

    Article  CAS  Google Scholar 

  11. H. I. Park, U. Mushtaq, D. Perello, I. Lee, S.K. Cho, A. Star and M. Yun, Energy Fuel, 2, 2984 (2007).

    Article  Google Scholar 

  12. M. Rosenbaum, F. Zhao, U. Schroder and F. Scholz. Angew. Chem. Int. Edit., 45, 6658 (2006).

    Article  CAS  Google Scholar 

  13. S. Cheng, H. Liu and B. E. Logan, Eviron. Sci. Technol., 40, 364 (2006).

    Article  CAS  Google Scholar 

  14. F. Zhao, F. Harnisch, U. Schrorder, F. Scholz, P. Bogdanoff and I. Herrmann, Electrochem. Commun., 7, 1405 (2005).

    Article  CAS  Google Scholar 

  15. G.W. Chen, S. J. Choi, T. H. Lee, G.Y. Lee, J.W. Cha and C.W. Kim, Appl. Microbiol. Biot., 79, 379 (2008).

    Article  CAS  Google Scholar 

  16. P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey and W. Verstraete, Eviron. Sci. Technol., 41, 7564 (2007).

    Article  CAS  Google Scholar 

  17. J.A. Gralnick and D. K. Newman, Mol. Microbiol., 65, 1 (2007).

    Article  Google Scholar 

  18. Z. He and L. T. Angenent, Electronal., 18, 2009 (2006).

    Article  CAS  Google Scholar 

  19. A. Bergel, D. Feron and A. Mollica, Electrochem. Commun., 7, 900 (2005).

    Article  CAS  Google Scholar 

  20. K. Rabaey, S. T. Read, P. Clauwaert, S. Freguia, P. L. Bond, L. L. Blackall and J. Keller, ISME J., 2, 519 (2008).

    Article  CAS  Google Scholar 

  21. P. Clauwaert, K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon and W. Verstraete, Eviron. Sci. Technol., 41, 3354 (2007).

    Article  CAS  Google Scholar 

  22. O. Lefebvre, A. Al-Mamun and H.Y. Ng, Water Sci. Technol., 58, 881 (2008).

    Article  CAS  Google Scholar 

  23. Y.H. Jia, H. T. Tran, D. H. Kim, S. J. Oh, D.H. Park, R.H. Zhang and D. H. Ahn, Bioproc. Biosyst. Eng., 31, 315 (2008).

    Article  CAS  Google Scholar 

  24. P. Aelterman, K. Rabaey, P. Clauwaert and W. Verstraete, Water Sci. Technol., 54, 9 (2006).

    CAS  Google Scholar 

  25. K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege and W. Verstraete, Appl. Environ. Microbiol., 70, 5373 (2004).

    Article  CAS  Google Scholar 

  26. A. J. Bard and L.R. Faulkner Electrochemical method: Fundamentals and applications, 2nd Ed., John Wiley & Sons Ltd., New York (2001).

    Google Scholar 

  27. F. Silveira, D. S. de Sa, Z.N. da Rocha and J.H. Z. dos Santos, Macromol. React. Eng., 2, 253 (2008).

    Article  CAS  Google Scholar 

  28. D. E. Holmes, D. R. Bond, R. A. O’Neil, C. E. Reimers, L. R. Tender and D. R. Lovley, Microbial. Ecol., 48, 178 (2004).

    Article  CAS  Google Scholar 

  29. D. K. Newman and R. Kolter, Nature, 405, 94 (2000).

    Article  CAS  Google Scholar 

  30. U. Schroder, Phys. Chem. Chem. Phys., 9, 2619 (2007).

    Article  Google Scholar 

  31. S. Freguia, K. Rabaey, Z. Yuan and J. Keller, Electrochim. Acta, 53, 598 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GW., Cha, JH., Choi, SJ. et al. Characterization of an open biocathode microbial fuel cell for electricity generation and effluent polish. Korean J. Chem. Eng. 27, 828–835 (2010). https://doi.org/10.1007/s11814-010-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0142-6

Key words

Navigation