Skip to main content
Log in

Mathematical modeling of CO2 removal using carbonation with CaO: The grain model

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CaO carbonation with CO2 is potentially a very important reaction for CO2 removal from exhaust gas produced in power plants and other metallurgical plants and for hydrogen production by promoting water gas shift reaction in fossil fuel gasification. A mathematical model based on the grain model was applied for modeling of this reaction. Diffusion of gaseous phase through the product layer and structural change of the grains were considered in the model. The modeling results show that ignoring the reaction kinetics controlling regime in the early stage of the reaction and replacing it with a regime considering both the reaction kinetics and diffusion can generate good simulation results. The frequency factor of the reaction rate equation and the diffusivity of CO2 through the CaCO3 layer were justified to get the best fit at different temperature range from 400 to 750 °C with respect to experimental data in the literature. The mathematical model switches to a pure diffusion controlling regime at final stage of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Eloneva, Mineral carbonation process modeling and carbonate product stability, Helsinki University of Technology (2004).

  2. T. Koljonen, H. Siikavirta and R. Zevenhoven, CO2 Capture and Storage and Utilization In Finalnd, Valtion teknillinen tutkimuskeskus, Project Report PRO4/T7504/02, 95 (2002).

  3. S. K. Bhatia and D. D. Perlmutter, AIChE J., 29, 1, 79 (1983).

    Article  Google Scholar 

  4. A. J. Dedman and A. J. Owen, Trans. Soc., 58, 2027 (1982).

    Google Scholar 

  5. W. G. Oakeson and I. B. Culter, J. Am. Cream. Soc., 62, 11&556 (1979).

    Article  Google Scholar 

  6. H. Gupta and L. S. Fan, Ind. Eng. Chem., 41, 4035 (2002).

    Article  CAS  Google Scholar 

  7. D. K. Lee, I. H. Baek and W. L. Yoon, Chem. Eng. Sci., 59, 931 (2004).

    Article  CAS  Google Scholar 

  8. D. K. Lee, Chem. Eng. J., 100, 71 (2004).

    Article  CAS  Google Scholar 

  9. V. Nikulshina, M. E. Gálvez and A. Steinfeld, Chem. Eng. J., 129, 75 (2007).

    Article  CAS  Google Scholar 

  10. B.R. Stanmore and P. Gilot, Fuel Process. Technol., 86, 1707 (2005).

    Article  CAS  Google Scholar 

  11. B. Khoshandam, R. V. Kumar and E. Jamshidi, Trans. Inst. Min. Metall. C, 114, C10 (2005).

    CAS  Google Scholar 

  12. J. Szekely, J.W. Evans and H.Y. Sohn, Gas-solid reactions, Academic Press, New York (1976).

    Google Scholar 

  13. O. Levenspiel, Chemical reaction engineering, Wiley, New York (1965).

    Google Scholar 

  14. N. Wakao and J. M. Smith, Chem. Eng. Sci., 17, 825 (1962).

    Article  CAS  Google Scholar 

  15. C. N. Satterfield, Mass transfer in heterogeneous catalysis, MIT Press, Cambridge, MA (1970).

    Google Scholar 

  16. E.A. Mason, A. P. Malinauskas and R. B. Evans, J. Chem. Phys., 46 (1967).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Khoshandam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshandam, B., Kumar, R.V. & Allahgholi, L. Mathematical modeling of CO2 removal using carbonation with CaO: The grain model. Korean J. Chem. Eng. 27, 766–776 (2010). https://doi.org/10.1007/s11814-010-0119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0119-5

Key words

Navigation