Skip to main content
Log in

Media configuration and recirculation of upflow anaerobic floating filter for piggery wastewater treatment

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An upflow anaerobic floating filter media (UAFF) reactor was applied to the treatment of synthetic and real piggery wastewater. The effect of media configuration and internal recirculation on the system performance was studied. In the first experiment, three-UAFF reactors filled with different media, i.e., polypropylene beads, sponge cubes and coconut fiber were continuously fed with synthetic wastewater at upflow velocity of 0.04 m h−1. The COD removal efficiency in the reactor filled with sponge cubes was highest at 90%, whereas the others filled with polypropylene beads and coconut fibers with lower specific surface area were about 80%. In the second experiment, three-UAFF reactors with sponge were applied to treat real piggery wastewater. COD removal efficiencies were found to be about 80% and methane production rate of 0.26 l l −1 r d−1. The system performance could be slightly improved by 10% when applying internal recirculation. A sludge blanket (60–70% of total biomass) plays an important role in the system when applied to the treatment of piggery wastewater containing high suspended solid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Henze and P. Harremoes, Wat. Sci. Tech., 15, 1 (1983).

    CAS  Google Scholar 

  2. L. Shu, S. H. Lee and V. Jegatheesan, Environ. Eng. Res., 17(2), 75 (2002).

    Google Scholar 

  3. S. H. Lee, J. C. Park and D. Brissonneau, Environ. Eng. Res., 8(3), 107 (2003).

    Article  Google Scholar 

  4. M. G. Lee and T. Hano, Korean J. Chem. Eng., 18, 178 (2001).

    Article  CAS  Google Scholar 

  5. M. S. Salkinoja-Salonen, E. J. Nyns, P. M. Sutton, L. van den Berg and E. D. Wheatley, Wat. Sci. Tech., 15, 305 (1983).

    CAS  Google Scholar 

  6. APHA, Standard methods for the examination of water and wastewater, 20th Ed. American Public Health Association, Washington D.C. (1998).

    Google Scholar 

  7. P. Schiener, S. Nachaiyasit and D. C. Stuckey, Environ. Technol., 19, 391 (1998).

    Article  CAS  Google Scholar 

  8. J. H. Park and J. K. Park, Korean J. Chem. Eng., 20, 83 (2003).

    Article  CAS  Google Scholar 

  9. S. F. Aquino and D. C. Stuckey, Wat. Sci. Tech., 45, 127 (2002).

    CAS  Google Scholar 

  10. D. J. Barker, G. A. Mannucchi, S. M. Salvi and D. C. Stuckey, Wat. Res., 33, 2499 (1999).

    Article  CAS  Google Scholar 

  11. W. C. Kuo, M. A. Sneve and G. F. Parkin, Wat. Environ. Res., 68, 279 (1996).

    Article  CAS  Google Scholar 

  12. D. R. Noguera, N. Araki and B. E. Rittmann, Wat. Sci. Tech., 30, 339 (1994).

    Google Scholar 

  13. J. A. S. Goodwin, D. A. J. Wase and C. F. Forster, Bioresource Technology, 41, 71 (1992).

    Article  CAS  Google Scholar 

  14. M. C. M. van Loosdrecht, D. Eikelbloom, A. Gjaltema, A. Mulder, L. Tijhuis and J. J. Heijnen, Wat. Sci Tech., 32, 35 (1995).

    Article  Google Scholar 

  15. J. A. Park, J. M. Hur, B. S. Son and J. H. Lee, Korean J. Chem. Eng., 18, 486 (2001).

    Article  CAS  Google Scholar 

  16. G. Zeeman, K. Sutter, T. Vens, M. Koster and A. Wellinger, Biological Wastes, 26, 15 (1988).

    Article  CAS  Google Scholar 

  17. M. J. Chen, Z. Zhang and T. R. Bott, Biotech. Tech., 12, 875 (1998).

    Article  CAS  Google Scholar 

  18. A. Noyola and G. Merino, Biotechnol. Bioeng., 44, 1040 (1994).

    Article  Google Scholar 

  19. J. Poels, P. Assche, P. Van and W. Verstraete, Biotechnology Lett., 6, 747 (1984).

    Article  CAS  Google Scholar 

  20. J. H. Tay, S. Jeyaseelan and K. Y. Show, Wat. Sci. Tech., 34, 453 (1996).

    Article  CAS  Google Scholar 

  21. J. W. Hudson, F. G. Pohland and D. Pendergrass., Proceeding of the 33rd Industrial Waste Conference, May 9, 10 and 11, 1978, Purdue University, West Lafayette, Indiana. Ann Arbor Science, Ann Arbor, Mich., 560–574 (1978).

    Google Scholar 

  22. K. V. Lo, P. H., Liao and Y. C. Gao, Bioresources Technology, 47, 153 (1994).

    Article  CAS  Google Scholar 

  23. T. A. Elmitwalli, M. H. Zandvoort, G. Zeeman, H. Bruning and G. Lettinga, Wat. Sci. Tech., 39, 177 (1999).

    Article  CAS  Google Scholar 

  24. V. Jegatheesan, S. H. Lee, C. Visvanathan, L. Shu and M. Marzella, Environ. Eng. Res., 4(4), 283 (1999).

    Google Scholar 

  25. M. R. Domingues, J. C. Araujo, M. B. A. Varesche and R. F. Vazoller, Wat. Sci. Tech., 45, 27 (2002).

    CAS  Google Scholar 

  26. D. R. Ranade and R. V. Garade, Microbiological Aspects of Anaerobic Digestion: Laboratory Manual, Maharashtra Association for the Cultivation of Science, Research Institute, India (1988).

    Google Scholar 

  27. W. K. Ng, V. R. Jegatheesan and S. H. Lee, Korean J. Chem. Eng., 23, 333 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, H., Lee, S. et al. Media configuration and recirculation of upflow anaerobic floating filter for piggery wastewater treatment. Korean J. Chem. Eng. 24, 980–988 (2007). https://doi.org/10.1007/s11814-007-0108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0108-5

Key words

Navigation