Skip to main content
Log in

An experimental investigation on the stability of foundation of composite vertical breakwaters

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

A series of 2D model tests were conducted to assess the foundation stability of composite vertical breakwaters. In this paper, the results from the experimental study are presented conjointly with a formula to estimate the stability number of foundation, which is the most important parameter for evaluation of foundation stability of such structures. The influences of wave height, wave period and the berm width on the stability of composite breakwaters with different armor stone sizes were investigated. Forty-five tests were performed to cover the influences of these parameters. According to the present research, berm width is a significant parameter concerning erosion of armor foundation. As the berm width increases, the amount of berm erosion decreases. Comparisons are made between results of present study and the estimated stability number proposed by Kimura et al. (1994), which is extension of Tanimoto formula. Results show that the later formula underestimates the stability number. However, by applying an enhancement factor about 1.7 meters to Kimura et al. formula, results correlated with the present experimental results..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brebner A, Donnelly P (1962). Laboratory study of rubble foundations for vertical breakwaters. Coastal Engineering Proceedings, 1(8), 24. DOI: 10.9753/icce.v8.24

    Google Scholar 

  • Cuomo G, Lupoi G, Shimosako KI, Takahashi S (2011). Dynamic response and sliding distance of composite breakwaters under breaking and non-breaking wave attack. Coastal Engineering, 58(10), 953–969. DOI: 10.1016/j.coastaleng.2011.03.008

    Article  Google Scholar 

  • De Best A, Bijker EW, Wichers JEW (1971). Scouring of sand in front of a vertical breakwater. Proc. Conference on Port and Ocean Engineering under Arctic Conditions Vol. 2, The Norwegian Institute of Technology, Trondheim, Norway, 1077–1086.

    Google Scholar 

  • ENGINEERS U.A.C.O. (2006). Coastal engineering manual–Part VI.Publication Number EM 1110-2-1100, Proponent CECW-EW., Washington, DC.

    Google Scholar 

  • Esteban M, Morikubo I, Shibayama T, Aranguiz-Muñoz R, Mikami T, Nguyen TD, Ohtani A (2012). Stability of rubble mound breakwaters against solitary waves. Coastal Engineering Proceedings, 1(33), Structures-9. DOI: 10.9753/icce.v33.structures.9

    Google Scholar 

  • Goda Y (1994). Dynamic response of upright breakwaters to impulsive breaking wave forces. Coastal Engineering, 22(1), 135–158. DOI: 10.1016/0378-3839(94)90051-5

    Article  Google Scholar 

  • Hughes SA, Fowler JE (1991). Wave-induced scour prediction at vertical walls. ASCE Proc. Conf. Coastal Sediments 91, 1886–1899.

    Google Scholar 

  • Hughes SA, Fowler JE (1995). Estimating wave-induced kinematics at sloping structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(4), 209–215. DOI: 10.1061/(ASCE)0733-950X(1995)121:4(209)

    Article  Google Scholar 

  • ai]10. Hudson RY (1959). Laboratory investigations of rubble-mound breakwaters. American Society of Civil Engineers (ASCE).

    Google Scholar 

  • Irie I, Nadaoka K (1984). Laboratory reproduction of seabed scour in front of breakwaters. Proc. 19th International Conference on Coastal Engineering, Houston, 2, 1715–1731. DOI: 10.9753/icce.v19

    Google Scholar 

  • Kimura K, Takahashi S, Tanimoto K (1994). Stability of rubble mound foundations of composite breakwaters under oblique wave attack. Coastal Engineering Proceedings, 1(24). DOI: 10.9753/icce.v24

    Google Scholar 

  • Lamberti A, Martinelli L (1998). Prototype measurements of the dynamic response of caisson breakwaters. Coastal Engineering Proceedings, 1(26). DOI: 10.9753/icce.v26

    Google Scholar 

  • Mansard EP, Funke ER (1980). The measurement of incident and reflected spectra using a least squares method. Coastal Engineering Proceedings, 1(17). DOI: 10.9753/icce.v17

    Google Scholar 

  • Markle DG (1989). Stability of toe berm armor stone and Toe buttressing stone on Rubble-mound breakwaters and Jetties: physical model investigation. US Army Engineer Waterways Experiment Station.

    Google Scholar 

  • Mitsui J, Matsumoto A, Hanzawa M, Nadaoka K (2014). Stability of armor units covering rubble mound of composite breakwaters against a steady overflow of tsunami. Coastal Engineering Proceedings, 1(34), Structures-34. DOI: 10.9753/icce.v34.structures.34

    Google Scholar 

  • Moghim MN, Shafieefar M, Tørum A, Chegini V (2011). A new formula for the sea state and structural parameters influencing the stability of homogeneous reshaping berm breakwaters. Coastal Engineering, 58(8), 706–721. DOI: 10.1016/j.coastaleng.2011.03.006

    Article  Google Scholar 

  • Oumeraci H (1994a). Review and analysis of vertical breakwater failures—lessons learned. Coastal Engineering, 22(1), 3–29. DOI: 10.1016/0378-3839(94)90046-9

    Article  Google Scholar 

  • Oumeraci H (1994b). Scour in front of vertical breakwaters—review of problems. Proc. International Workshop on Wave Barriers in Deep Water, Yokosuka, Japan, 281–307.

    Google Scholar 

  • Oumeraci H, Kortenhaus A (1994). Analysis of the dynamic response of caisson breakwaters. Coastal Engineering, 22(1), 159–183. DOI: 10.1016/0378-3839(94)90052-3

    Article  Google Scholar 

  • Ruol P, Martin P, Andersen TL, Martinelli L (2014). Experimental investigation on caisson breakwater sliding. Coastal Engineering Proceedings, 1(34), Structures-74. DOI: 10.9753/icce.v34.structures.74

    Google Scholar 

  • Shafieefar M, Shekari MR (2014). An experimental study on the parameterization of reshaped seaward profile of berm breakwaters. Coastal Engineering, 91, 123–139. DOI: 10.1016/j.coastaleng.2014.05.009

    Article  Google Scholar 

  • Takahashi S (2002). Design of vertical breakwaters. Port and Airport Research Institute, Japan.

    Google Scholar 

  • Tanimoto K, Yagyu T, Goda Y (1982). Irregular wave tests for composite breakwater foundations. Coastal Engineering Proceedings, 1(18). DOI: 10.9753/icce.v18.%25p

    Google Scholar 

  • Ulker MBC, Rahman MS, Guddati MN (2010). Wave-induced dynamic response and instability of seabed around caisson breakwater. Ocean Engineering, 37(17), 1522–1545. DOI: 10.1016/j.oceaneng.2010.09.004

    Article  Google Scholar 

  • Vander Meer JW (1987). Stability of breakwater armour layers—design formulae. Coastal Engineering, 11(3), 219–239. DOI: 10.1016/0378-3839(87)90013-5

    Article  MathSciNet  Google Scholar 

  • Xie SL (1985). Scouring patterns in front of vertical breakwaters. Acta Oceanologica Sinica, 4(1), 153–164.

    Google Scholar 

  • Xie SL (1981). Scouring patterns in front of vertical breakwaters and their influence on the stability of the foundations of the breakwaters. Report. Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands, September, 61.

    Google Scholar 

  • Ye JH, Jeng DS, Liu PF, Chan AHC, Wang R, Zhu CQ (2014a). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation. Coastal Engineering, 85, 72–86. DOI: 10.1016/j.coastaleng.2013.08.003

    Article  Google Scholar 

  • Ye JH, Zhang Y, Wang R, Zhu CQ (2014b). Nonlinear interaction between wave, breakwater and its loose seabed foundation: A small-scale case. Ocean Engineering, 91, 300–315. DOI:10.1016/j.oceaneng.2014.09.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shafieefar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, M.A., Shafieefar, M. An experimental investigation on the stability of foundation of composite vertical breakwaters. J. Marine. Sci. Appl. 14, 175–182 (2015). https://doi.org/10.1007/s11804-015-1309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1309-7

Keywords

Navigation