Skip to main content
Log in

Transcriptomic Profiling of the Immune Response to Crowding Stress in Juvenile Turbot (Scophthalmus maximus)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, juvenile turbot Scophthalmus maximus were vaccinated with attenuated Edwardsiella tarda (EIBAV1) and reared at two different densities, low density (LD), (5.25±0.02)kgm−2, as control group and high density (HD), (20.53±0.05) kg m−2, as experimental group. Only density was considered as the variable. Five weeks after vaccination, the transcriptomes of spleen and head kidney from the turbot in two groups were analyzed with RNA-Seq technology. A total of 447 million reads were assembled into 41136 genes with an average length of 1274 bp and a N50 size of 2295 bp. A comparison of gene expression between HD and LD groups revealed 1155 differentially expressed genes (DEGs). Enrichment and pathway analysis of the 10 immune-related DEGs showed the centrality of toll-like receptor signaling pathway, cytosolic DNA-sensing pathway and platelet activation in the host immune responses. The 5 overexpressed inflammatory cytokines and 5 downregulated signal-regulated cytokines genes are covered by these immune-related DEGs. It was inferred that cells suffer damage and the immune response is restrained in turbot under crowding stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonio, F., Diego, R., André, C., Miguel, H., Patricia, P., Juan, R., Jèssica, G. G., Laia, C., Xabier, B., Marta, G., Marina, M. H., Gabriel, F. C., Beatriz, G., José, L. G., José, L. A. F., Belen, G. P., Xoana, T., Carlos, F., Anna, V., Antonio, H. P., Roderic, G., José, A. Á. D., Antonio, G. T., Ana, V., Xulio, M., Toni, G., Beatriz, N., Carmen, B., Tyler, A., and Paullino, M., 2016. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): A fish adapted to demersal life. DNA Research, 23(3): 181–192.

    Google Scholar 

  • Aslam, R., Speck, E. R., Kim, M., Andrew, R. C., Bang, K. W. A., Nestel, F. P., Ni, H., Lazarus, A. H., Freedman, J., and Semple, J. W., 2006. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood, 107(2): 637–641.

    Google Scholar 

  • Bagasra, O., 1997. The immunobiology of interferon-gamma inducible protein 10kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine & Growth Factor Reviews, 8(3): 207–219.

    Google Scholar 

  • Bhattacharjee, R., Xiang, W., Wang, Y., Zhang, X. Y., and Billiar, T. R., 2012. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes. Biochemical and Biophysical Research Communications, 423(1): 85–90.

    Google Scholar 

  • Campbell, M. A., Chen, W. J., and López, J. A., 2014. Molecular data do not provide unambiguous support for the monophyly of flatfishes (Pleuronectiformes): A reply to Betancur-R and Ortí. Molecular Phylogenetics & Evolution, 75(1): 149–153.

    Google Scholar 

  • Chen, S. L., Liu, Y., Dong, X. L., and Meng, L., 2010. Cloning, characterization, and expression analysis of a CC chemokine gene from turbot (Scophthalmus maximus). Fish Physiology and Biochemistry, 36(2): 147–155.

    Google Scholar 

  • Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J. N., Hong, Y., Li, Q., Sha, Z., Zhou, H., Xie, M., Yu, Q., Liu, Y., Xiang, H., Wang, N., Wu, K., Yang, C., Zhou, Q., Liao, X., Yang, L., Hu, Q., Zhang, J., Zhu, Y., Du, M., Zhao, Y., Schartl, M., Tang, Q., and Wang, J., 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 46(3): 253.

    Google Scholar 

  • Cognasse, F., Hamzeh, H., Chavarin, P., Acquart, S., Genin, C., and Garraud, O., 2005. Evidence of Toll-like receptor molecules on human platelets. Immunology & Cell Biology, 83(2): 196–198.

    Google Scholar 

  • Coppinger, J. A., Cagney, G., Toomey, S., Kislinger, T., Belton, O., Mcredmond, J. P., Cahill, D. J., Emili, A., Fitzgerald, D. J., and Maguire, P. B., 2004. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood, 103(6): 2096–2104.

    Google Scholar 

  • Cox, D., Kerrigan, S. W., and Watson, S. P., 2011. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation. Journal of Thrombosis & Haemostasis, 9(6): 1097.

    Google Scholar 

  • Cristea, V., Mocanu, M., Antache, A., Docan, A., Dediu, L., Ion, Sandita., and Coadă, M. T., 2012. Effect of stocking density on leuckocyte reaction of Oncorhynchus mykiss (Walbaum, 1792). Lucrari Stiintifice Zootehnie Si Biotehnologii, 45(2): 31–36.

    Google Scholar 

  • Cruciat, C. M., Dolde, C., de Groot, R. E., Ohkawara, B., Reinhard, C., Korswaqen, H. C., and Niehrs, C., 2013. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in wnt-β-catenin signaling. Science, 339(6126): 1436–1441.

    Google Scholar 

  • de Souza, A. L., and Seguro, A. C., 2008. Two centuries of meningococcal infection: From vieusseux to the cellular and molecular basis of disease. Journal of Medical Microbiology, 57(11): 1313–1321.

    Google Scholar 

  • Dou, F., Yuan, L. D., and Zhu, J. J., 2005. Heat shock protein 90 indirectly regulates ERK activity by affecting RAF protein metabolism. Acta Biochimica et Biophysica Sinica, 37(7): 501–505.

    Google Scholar 

  • Du, X., Li, Y., Li, D., Lian, F., Yang, S., Wu, J., Liu, H., Bu, G., Meng, F., Cao, X., Zeng, X., Zhang, H., and Chen, Z., 2017. Transcriptome profiling of spleen provides insights into the antiviral mechanism in Schizothorax prenanti, after poly (i:c) challenge. Fish & Shellfish Immunology, 62: 13–23.

    Google Scholar 

  • Dulay, A. T., Buhimschi, C. S., Zhao, G., Oliver, E. A., Mbele, A., Jing, S. C., and Buhimschi, I. A., 2009. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. Journal of Immunology, 182(11): 7244–7253.

    Google Scholar 

  • Ellis, A. E., 2001. Innate host defense mechanisms of fish against viruses and bacteria. Developmental & Comparative Immunology, 25(8): 827–839.

    Google Scholar 

  • Fitzgerald, J. R., Foster, T. J., and Cox, D., 2006. The interaction of bacterial pathogens with platelets. Nature Reviews Microbiology, 4(6): 445–457.

    Google Scholar 

  • Fritz, J. H., Brunner, S., Birnstiel, M. L., Buschle, M., Gabain, A., Mattner, F., and Zauner, W., 2004. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine, 22(25–26): 3274–3284.

    Google Scholar 

  • Fullam, A., and Schröder, M., 2013. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochimica et Biophysica Acta, 1829(8): 854–865.

    Google Scholar 

  • Gao, C., Qiang, F., Su, B., Zhou, S., Liu, F., Song, L., Zhang, M., Ren, Y., Dong, X., Tan, F., and Li, C., 2016. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum, challenge. Developmental & Comparative Immunology, 65: 159–168.

    Google Scholar 

  • Garraud, O., and Cognasse, F., 2010. Platelet toll-like receptor expression: The link between ‘danger’ ligands and inflammation. Inflammation & Allergy Drug Targets, 9(5): 322–333.

    Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Palma, F. D., Birren, B. W., Nusbaum, C., Toh, K. L., Friedman, N., and Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644–652.

    Google Scholar 

  • Grandoch, M., Roscioni, S. S., and Schmidt, M., 2010. The role of epac proteins, novel camp mediators, in the regulation of immune, lung and neuronal function. British Journal of Pharmacology, 159(2): 265–284.

    Google Scholar 

  • Griffiths, E. K., Krawczyk, C., Kong, Y. Y., Raab, M., Hyduk, S. J., Bouchard, D., Chan, V. S., Kozieradzki, I., Oliveira-Dos-Santos, A. J., Wakeham, A., Ohashi, P. S., Cybulsky, M. I., Rudd, C. E., and Penninger, J. M., 2001. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science, 293(5538): 2260–2263.

    Google Scholar 

  • Han, J., Lim, C. J., Watanabe, N., Soriani, A., Ratnikow, B., Calderwood, D. A., Puzon-Mclaughlin, W., Lafuente, E. M., Boussiotis, V. A., Shattil, S. J., and Ginsberg, M. H., 2006. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Current Biology, 16(18): 1796–1806.

    Google Scholar 

  • Helmreich, E. J. M., 2001. Components of Signaling Networks: Linkers and Regulators. The Biochemistry of Cell Signaling. Oxford University Press, New York, 368pp.

    Google Scholar 

  • Huo, H., Yin, S., Jia, R., Huang, B., Lei, J., and Liu, B., 2017. Effect of crowding stress on the immune response in turbot (Scophthalmus maximus) vaccinated with attenuated Edwardsiella tarda. Fish & Shellfish Immunology, 67(5): 353–358.

    Google Scholar 

  • Iguchi, K., Ogawa, K., Nagae, M., and Ito, F., 2003. The influence of rearing density on stress response and disease susceptibility of ayu (Plecoglossus altivelis). Aquaculture, 220(1): 515–523.

    Google Scholar 

  • Ikeyama, S., Kokkonen, G., Shack, S., Wang, X. T., and Holbrook, N. J., 2002. Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. Faseb Journal, 16(1): 114–116.

    Google Scholar 

  • Jia, R., Liu, B. L., Feng, W. R., Han, C., Huang, B., and Lei, J. L., 2016. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish & Shellfish Immunology, 55: 131–139.

    Google Scholar 

  • Juell, J. E., and Fosseidengen, J. E., 2004. Use of artificial light to control swimming depth and fish density of Atlantic salmon (Salmo salar) in production cages. Aquaculture, 233(1–4): 269–282.

    Google Scholar 

  • Li, G., Zhao, Y., Liu, Z., Gao, C., Yan, F., Liu, B., and Feng, J., 2015. De novo assembly and characterization of the spleen transcriptome of common carp (Cyprinus carpio) using illumina paired-end sequencing. Fish & Shellfish Immunology, 44(2): 420–429.

    Google Scholar 

  • Li, R., Yu, C., Li, Y., Lam, T., Yiu, S., Kristiansen, K., and Wang, J., 2009. Soap2: An improved ultrafast tool for short read alignment. Bioinformatics, 25(15): 1966–1967.

    Google Scholar 

  • Liang, Q., Seo, G. J., Choi, Y. J., Kwak, M., Ge, J., Rodgers, M. A., Shi, M., Leslie, B. J., Hopfner, K., Ha, T., Oh, B., and Jung, J. U., 2014. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host & Microbe, 15(2): 228–238.

    Google Scholar 

  • Liu, G., Zhang, L., and Zhao, Y., 2010. Modulation of immune responses through direct activation of toll-like receptors to T cells. Clinical & Experimental Immunology, 160(2): 168–175.

    Google Scholar 

  • Liu, Y., Chen, S. L., Meng, L., and Zhang, Y. X., 2007. Cloning, characterization and expression analysis of a novel CXC chemokine from turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 23(4): 711–720.

    Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402–408.

    Google Scholar 

  • Long, Y., Li, Q., Zhou, B., Song, G., Li, T., and Cui, Z., 2013. De novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunity and epidermal mucus secretion. PLoS One, 8(2): e56 998.

    Google Scholar 

  • Marshall, N. A., Galvin, K. C., Corcoran, A. M., Boon, L., Hiqqs, R., and Mills, K. H., 2012. Immunotherapy with PI3K inhibitor and toll-like receptor agonist induces IFN-γ+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Research, 72(3): 581–591.

    Google Scholar 

  • Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L., and Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7): 621–628.

    Google Scholar 

  • Nakanishi, K., Yoshimoto, T., Tsutsui, H., and Okamura, H., 2001. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine & Growth Factor Reviews, 12(1): 53–72.

    Google Scholar 

  • Nardocci, G., Navarro, C., Cortés, P. P., Imarai, M., Montoya, M., Valenzuela, B., Jara, P., Castillo, C. A., and Fernánde, R., 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology, 40(2): 531–538.

    Google Scholar 

  • Neiva, B., Ronaldolima, D. L., Bernardo, B., Alcirluiz, D., and Alexpires, D. O. N., 2010. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture, 301(1–4): 22–30.

    Google Scholar 

  • North, B. P., Turnbull, J. F., Ellis, T., Port, M. J., Migaud, H., Bron, J., and Bromage, N. R., 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture, 255(1–4): 466–479.

    Google Scholar 

  • Oda, S., Schröder, M., and Khan, A. R., 2009. Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure, 17(11): 1528–1537.

    Google Scholar 

  • Padmini, E., and Tharani, J., 2014. Fourier transform infrared spectroscopic study on HSP70 and ERK in fish hepatocytes during pollution induced stress. International Journal of Research in Chemistry and Environment, 4(2): 114–125.

    Google Scholar 

  • Pasare, C., and Medzhitov, R., 2004. Toll-like receptors: Linking innate and adaptive immunity. Microbes & Infection, 6(15): 1382–1387.

    Google Scholar 

  • Patricia, P., Pablo, B., Alejandro, R., Sonia, D., Gabriel, F., Berta, F., Josep, V. P., Sergi, B., Beatriz, N., and Antonio, F., 2012. High-throughput sequence analysis of turbot (Scophthalmus maximus) transcriptome using 454-pyrosequencing for the discovery of antiviral immune genes. PLoS One, 7(5): e35369.

    Google Scholar 

  • Peatman, E., Li, C., Peterson, B. C., Straus, D. L., Farmer, B. D., and Beck, B. H., 2013. Basal polarization of the mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish (Ictalurus punctatus). Molecular Immunology, 56(4): 317–327.

    Google Scholar 

  • Pulsford, A. L., Crampe, M., Langston, A., and Glynn, P. J., 1995. Modulatory effects of disease, stress, copper, TBT and vitamin E on the immune system of flatfish. Fish & Shellfish Immunology, 5(8): 631–643.

    Google Scholar 

  • Rehani, K., Wang, H., Garcia, C. A., Kinane, D. F., and Martin, M., 2009. Toll-like receptor-mediated production of IL-1Ra is negatively regulated by GSK3 via the MAPK ERK1/2. Journal of Immunology, 182(1): 547–553.

    Google Scholar 

  • Rengaraj, D., Truong, A. D., Lee, S. H., Lillehoj, H. S., and Hong, Y. H., 2016. Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken. Veterinary Immunology & Immunopathology, 170: 1–12.

    Google Scholar 

  • Robledo, D., Hermida, M., Rubiolo, J. A., Fernández, C., Blanco, A., Bouza, C., and Martínez, P., 2016. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comparative Biochemistry & Physiology Part D Genomics & Proteomics, 21: 41–55.

    Google Scholar 

  • Robledo, D., Ronza, P., Harrison, P. W., Losada, A. P., Bermúdez, R., Pardo, B. G., Redondo, M. J., Bobadilla, A. S., Quiroga, M. I., and Martínez, P., 2014. RNA-Seq analysis reveals significant transcriptome changes in turbot (Scophthalmus maximus) suffering severe enteromyxosis. BMC Genomics, 15(1): 1149.

    Google Scholar 

  • Roers, A., Hiller, B., and Hornung, V., 2016. Recognition of endogenous nucleic acids by the innate immune system. Immunity, 44(4): 739–754.

    Google Scholar 

  • Ronza, P., Robledo, D., Bermúdez, R., Losada, A. P., Pardo, B. G., Bobadilla, A. S., Quiroga, M. I., and Martínez, P., 2016. RNA-Seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): New insights into parasite invasion and immune evasion strategies. International Journal for Parasitology, 46(8): 507–517.

    Google Scholar 

  • Schneider, W. M., Chevillotte, M. D., and Rice, C. M., 2014. Interferon-stimulated genes: A complex web of host defenses. Annual Review of Immunology, 32(1): 513–545.

    Google Scholar 

  • Shi, Z., Hodges, V. M., Dunlop, E. A., Percy, M. J., Maxwell, A. P., EI-Tanani, M., and Lappin, T. R., 2010. Erythropoietin-induced activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK pathways promotes malignant cell behavior in a modified breast cancer cell line. Molecular Cancer Research, 8(4): 615–626.

    Google Scholar 

  • Thompson, M. R., Kaminski, J. J., Kurtjones, E. A., and Fitzgerald, K. A., 2011. Pattern recognition receptors and the innate immune response to viral infection. Viruses, 3(6): 920–940.

    Google Scholar 

  • Tort, L., 2011. Stress and immune modulation in fish. Developmental & Comparative Immunology, 35(12): 1366–1375.

    Google Scholar 

  • Turnbull, J., Bell, A., Adams, C., Bron, J., and Huntingford, F., 2005. Stocking density and welfare of cage farmed atlantic salmon: Application of a multivariate analysis. Aquaculture, 243(1–4): 121–132.

    Google Scholar 

  • Vargas-Chacoff, L., Martínez, D., Oyarzún, R., Nualart, D., Olavarría, V., Yáñez, A., Bertrán, C., Ruiz-Jarabo, I., and Mancera, J. M., 2014. Combined effects of high stocking density and Piscirickettsia salmonis treatment on the immune system, metabolism and osmoregulatory responses of the sub-antarctic notothenioid fish Eleginops maclovinus. Fish & Shellfish Immunology, 40(2): 424–434.

    Google Scholar 

  • Verburg-van Kemenade, B. L., Nowak, B., Engelsma, M. Y., and Weyts, F. A. A., 1999. Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish & Shellfish Immunology, 9(5): 405–415.

    Google Scholar 

  • Watson, R., Bell, S., Macduff, D., Kimmey, J., Diner, E., Olivas, J., Vance, R., Stallings, C., Virgin, H., and Cox, J., 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis, DNA to induce type I interferons and activate autophagy. Cell Host & Microbe, 17(6): 811.

    Google Scholar 

  • Werling, D., Jann, O. C., Offord, V., Glass, E. J., and Coffey, T. J., 2009. Variation matters: TLR structure and species-specific pathogen recognition. Trends in Immunology, 30(3): 124–130.

    Google Scholar 

  • Wu, J., and Chen, Z. J., 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annual Review of Immunology, 32(1): 461.

    Google Scholar 

  • Xiang, L. X., He, D., Dong, W. R., Zhang, Y. W., and Shao, J. Z., 2010. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics, 11(472): 1–21.

    Google Scholar 

  • Xiao, J., Chen, T., Liu, B., Yang, W., Wang, Q., Qu, J., and Zhang, Y., 2013. Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish & Shellfish Immunology, 35(3): 632–641.

    Google Scholar 

  • Yang, K., Wang, J., and Wu, M., 2015. Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Scientific Reports, 5(7820): 1–9.

    Google Scholar 

  • Yarahmadi, P., Miandare, H. K., Hoseinifar, S. H., Gheysvandi, N., and Akbarzadeh, A., 2015. The effects of stocking density on hemato-immunological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 23(1): 55–63.

    Google Scholar 

  • Yeaman, M. R., 2010. Bacterial-platelet interactions: Virulence meets host defense. Future Microbiology, 5(3): 471–506.

    Google Scholar 

  • Yeaman, M. R., Bayer, A. S., Koo, S. P., Foss, W., and Sullam, P. M., 1998. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. Journal of Clinical Investigation, 101(1): 178–187.

    Google Scholar 

  • Yin, F., Gao, Q., Tang, B., Sun, P., Han, K., and Huang, W., 2016. Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection. Fish & Shellfish Immunology, 50: 127–141.

    Google Scholar 

  • Yoshie, O., Imai, T., and Nomiyama, H., 2001. Chemokines in immunity. Advances in Immunology, 78(78): 57–110.

    Google Scholar 

  • Zebral, Y. D., Zafalon-Silva, B., Mascarenhas, M. W., and Robaldo, R. B., 2015. Leucocyte profile and growth rates as indicators of crowding stress in pejerrey fingerlings (Odontesthes bonariensis). Aquaculture Research, 46(9): 2270–2276.

    Google Scholar 

  • Zhang, X., Wang, S., Chen, S., Chen, Y., Liu, Y., Shao, C., Wang, Q., Lu, Y., Gong, G., Ding, S., and Sha, Z., 2015. Transcriptome analysis revealed changes of multiple genes involved in immunity in Cynoglossus semilaevis during Vibrio anguillarum infection. Fish & Shellfish Immunology, 43(1): 209–218.

    Google Scholar 

  • Zhu, J., Li, C., Ao, Q., Tan, Y., Luo, Y., Guo, Y., Lan, G., Jiang, H., and Gan, X., 2015. Trancriptomic profiling revealed the signatures of acute immune response in tilapia (Oreochromis niloticus), following Streptococcus iniae, challenge. Fish & Shellfish Immunology, 46(2): 346–353.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB0404001), the Central Public-Interest Scientific Institution Basal Research Fund, CAFS (No. 2017HYZD04), the Qingdao Shinan District Science and Technology Bureau (No. 2016-3-006) and the Modern Agriculture Industry System Construction Special Funds (No. CARS-47-G24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoliang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, H., Gao, X., Fei, F. et al. Transcriptomic Profiling of the Immune Response to Crowding Stress in Juvenile Turbot (Scophthalmus maximus). J. Ocean Univ. China 19, 911–922 (2020). https://doi.org/10.1007/s11802-020-4242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4242-6

Key words

Navigation