Skip to main content
Log in

Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Two sulfated polysaccharides, designated MP and SP, were extracted from the marine green alga Enteromorpha linza using hot water and then purified using ion-exchange and size-exclusion chromatography. The anticoagulant activities of MP and SP were examined by determination of their activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) using human plasma. Results showed that MP and SP were composed of abundant rhamnose with small amounts of xylose and glucuronic acid, whereas SP also contained a small amount of galactose. Approximate molecular weights of MP and SP were 535 and 502 kDa, respectively. As compared with SP, MP had higher contents of sulfate ester (19.0%) and uronic acid (14.9%). The MP mainly consisted of (1→4)-linked rhamnose residues with partially sulfated groups at the C-3 position, and small amounts of (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid and (1→4)-linked xylose residues. The SP contained abundant (1→4)-linked rhamnose with minor amounts of (1→3)-linked rhamnose, (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid, (1→4)-linked xylose, and (1→3)-linked galactose residues. The sulfate groups were mainly located at C-3 of (1→4)-linked rhamnose residues. Both MP and SP, in particular the former, effectively prolonged APTT and TT. This work demonstrates that MP and SP have unique structural characteristics distinct from those of other sulfated polysaccharides from Enteromorpha. The MP is a potential source of anticoagulant, and the difference in anticoagulant activities of the two sulfated polysaccharides is directly linked to the discrepancy of their chemical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Athukorala, Y., Lee, K. W., Kim, S. K., and Jeon, Y. J., 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology, 98(9): 1 711–1 716.

    Article  Google Scholar 

  • Bitter, T. and Muir, H. M., 1962. A modified uronic acid carbazole reaction. Analytical Biochemistry, 4(4): 330–334.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.

    Article  Google Scholar 

  • Cassolato, J. E. F., Noseda, M. D., Pujol, C. A., Pellizzari, F. M., Damonte, E. B., and Duarte, M. E. R., 2008. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydrate Research, 343(18): 3085–3095.

    Article  Google Scholar 

  • Chattopadhyay, K., Mandal, P., Lerouge, P., Driouich, A., Ghosal, P., and Ray, B., 2007. Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales, Chlorophyta): Isolation and structural features. Food Chemistry, 104(3): 928–935.

    Article  Google Scholar 

  • Chen, Y., Mao, W. J., Tao, H. W., Zhu, W. M., Qi, X. H., Chen, Y. L., Li, H. Y., Zhao, C. Q., Yang, Y. P., Hou, Y. J., Wang, C. Y., and Li. N., 2011. Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp.Y16. Bioresource Technology, 102(17): 8179–8184.

    Article  Google Scholar 

  • Ciancia, M., Quintana, I., Vizcargüénaga, M. I., Kasulin, L., de Dios, A., Estevez, J. M., and Cerezo, A. S., 2007. Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. International Journal of Biological Macromolecules, 41(5): 641–649.

    Article  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350–356.

    Article  Google Scholar 

  • Fonseca, R. J. C., Oliveira, S. N. M. C. G., Melo, F. R., Pereira, M. G., Benevides, N. M. B., and Mourão, P. A. S., 2008. Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thrombosis and Haemostasis, 99(3): 539–545.

    Google Scholar 

  • Hakomori, S., 1964. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry, 55(2): 205–208.

    Google Scholar 

  • Harada, N. and Maeda, M., 1998. Chemical structure of antithrombin-active rhamnan sulfate from Monostrom nitidum. Bioscience, Biotechnology, and Biochemistry, 62(9): 1647–1652.

    Article  Google Scholar 

  • Jiao, L. L., Li, X., Li, T. B., Jiang, P., Zhang, L. X., Wu, M. J., and Zhang, L. P., 2009. Characterization and antitumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. International Immunopharmacology, 9(3): 324–329.

    Article  Google Scholar 

  • Kim, J. K., Cho, M. L., Karnjanapratum, S., Shin, I. S., and You, S. G., 2011. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. International Journal of Biological Macromolecules, 49(5): 1051–1 058.

    Article  Google Scholar 

  • Lahaye, M., 1998. NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydrate Research, 314(1–2): 1–12.

    Article  Google Scholar 

  • Lahaye, M., Brunel, M., and Bonnin, E., 1997. Fine chemical structure analysis of oligosaccharides produced by an ulvanlyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydrate Research, 304(3–4): 325–333.

    Article  Google Scholar 

  • Lahaye, M. and Ray, B., 1996. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides. Carbohydrate Research, 283(1): 161–173.

    Article  Google Scholar 

  • Li, H. Y., Mao, W. J., Zhang, X. L., Qi, X. H., Chen, Y., Chen, Y. L., Xu, J., Zhao, C. Q., Hou, Y. J., Yang, Y. P., Li, N., and Wang, C. Y., 2011. Structural characterization of an anticoagulant — active sulfated polysaccharide isolated from green alga Monostroma latissimum. Carbohydrate Polymers, 85(2): 394–400.

    Article  Google Scholar 

  • Li, H. Y., Mao, W. J., Hou, Y. J., Gao, Y., Qi, X. H., Zhao, C. Q., Chen, Y., Chen, Y. L., Li, N., and Wang, C. Y., 2012. Preparation, structure and anticoagulant activity of a low molecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostroma latissimum. Bioresource Technology, 114: 414–418.

    Article  Google Scholar 

  • Mao, W. J., Li, H. Y., Li, Y., Zhang, H. J., Qi, X. H., Sun, H. H., Chen, Y., and Guo, S. D., 2009. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). International Journal of Biological Macromolecules, 44(1): 70–74.

    Article  Google Scholar 

  • Maeda, M., Uehara, T., Harada, N., Sekiguchi, M., and Hiraoka, A., 1991. Heparinoid-active sulfated polysaccharides from Monostroma nitidum and their distribution in the Chlorophyta. Phytochemistry, 30(11): 3 611–3 614.

    Article  Google Scholar 

  • Marinho-Soriano, E. and Bourret, E., 2003. Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresource Technology, 90(3): 329–333.

    Article  Google Scholar 

  • Matthaei, J. H., Jone, O. W., Martin, R. G., and Nirenberg, M. W., 1962. Characteristics and composition of RNA coding units. Proceedings of the National Academy of Sciences, 48(4): 666–667.

    Article  Google Scholar 

  • Matsubara, K., Matsuura, Y., Bacic, A., Liao, M. L., Hori, K., and Miyazawa, K., 2001. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules, 28(5): 395–399.

    Article  Google Scholar 

  • Melo, F. R., Pereira, M. S., Foguel, D., and Mourão, P. A. S., 2004. Antithrombin-mediated anticoagulant activity of sulfated polysaccharides. The Journal of Biological Chemistry, 279(20): 20 824–20 835.

    Article  Google Scholar 

  • Mourâno, P. A. S., Pereira, M. S., Pavão, M. S. G., Mulloy, B., Tollefsen, D. M., Mowinckel, M. C., and Abildgaard, U., 1996. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. The Journal of Biological Chemistry, 271(39): 23 973–23 984.

    Google Scholar 

  • Pereira, M. G., Benevides, N. M. B., Melo, M. R. S., Valente, A. P., Melo, F. R., and Mourão, P. A. S., 2005. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidum crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydrate Research, 340(12): 2015–2 023.

    Article  Google Scholar 

  • Pereira, M. S., Mulloy, B., and Mourão, P. A. S., 1999. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. The Journal of Biological Chemistry, 274(12): 7 656–7 667.

    Article  Google Scholar 

  • Pomin, V. H., Pereira, M. S., Valente, A., Tollefsen, D. M., Pavão, M. S. G., and Mourão, P. A. S., 2005. Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glyco biology, 15(4): 369–381.

    Article  Google Scholar 

  • Ray, B., 2006. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 66(3): 408–416.

    Article  Google Scholar 

  • Rodrigues, J. A. G., Queiroz, I. N. L., Quinderé, A. L. G., Vairo, B. C., Mourão, P. A. S., and Benevides, N. M. B., 2011. An antithrombin-dependent sulfated polysaccharide isolated from the green alga Caulerpa cupressoides has in vivo anti- and prothrombotic effects. Ciencia Rural, 41(4): 634–639.

    Article  Google Scholar 

  • Sun, H. H., Mao, W. J., Chen, Y., Guo, S. D., Li, H. Y., Qi, X. H., Chen, Y. L., and Xu, J., 2009. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 78(1): 117–124.

    Article  Google Scholar 

  • Therho, T. T., and Hartiala, K., 1971. Method for determination of the sulfate content of glycosamino glycans. Analytical Biochemistry, 41(2): 471–476.

    Article  Google Scholar 

  • Xie, L., Chen, M. H., Li, J., Yang, X. M., and Huang, Q. J., 2011. Antithrombotic effect of a polysaccharide fraction from Laminaria japonica from the South China Sea. Phytotherapy Research, 25(9): 1362–1366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, X., Mao, W., Chen, Y. et al. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta). J. Ocean Univ. China 12, 175–182 (2013). https://doi.org/10.1007/s11802-013-2057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-2057-4

Key words

Navigation