Skip to main content
Log in

Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China. Identifications of red seaweeds, which have simple morphology and anatomy, are sometimes difficult solely depending on morphological characteristics. In recent years, DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties. Some DNA markers such as COI (cytochrome oxidase subunit I) are proposed as standardized DNA barcodes for all seaweed species. In this study, COI, UPA (universal plastid amplicon, domain V of 23S rRNA), and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°–121°E, 35.35°–37.09°N). The applicability of using one or a few combined barcodes to identify red seaweed species was tested. The results indicated that COI is a sensitive marker at species level. However, not all the tested species gave PCR amplification products due to lack of the universal primers. The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species. More than one ITS sequence types were found in some species in this investigation, which might lead to confusion in further analysis. Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez, I., and Wendel, J. F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29: 417–434.

    Article  Google Scholar 

  • Bailey, C. D., Carr, T. G., Harris, S. A., and Hughes, C. E., 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29: 435–455.

    Article  Google Scholar 

  • Clarkston, B. E., and Saunders, G. W., 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany, 88(2): 119–131.

    Article  Google Scholar 

  • Bischof, K., Gomez, I., Molis, M., Hanelt, D., Karsten, U., Luder, U., Roleda, M. Y., Zacher, K., and Wiencke C., 2006. Ultraviolet radiation shapes seaweed communities. Reviews in Environmental Science and Biotechnology, 5: 141–166.

    Article  Google Scholar 

  • Brodie, J., Mortensen, A. M., Ramirez, M. E., Russell, S., and Rinkel, B., 2008. Making the links: towards a global taxonomy for the red algal genus Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 20: 939–949

    Article  Google Scholar 

  • Cho, G. Y, Kogame, K., and Boo, S. M., 2006. Molecular phylogeny of the family Scytosiphonaceae (Phaeophyceae). Algae, 21: 175–183.

    Article  Google Scholar 

  • Conklin, K. Y., Kurihara, A., and Sherwood, A. R., 2009. A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. Journal of Applied Phycology, 21: 691–699.

    Article  Google Scholar 

  • Dasmahapatra, K. K., and Mallet, J., 2006. DNA barcodes: recent successes and future prospects. Heredity, 97: 254–255.

    Article  Google Scholar 

  • Ding, L. P., Huang, B. X., and Xie, Y. Q., 2011. Advances and problems with the study of marine macroalgae of China seas. Biodiversity Science, 19(6): 798–804.

    Google Scholar 

  • Erting, L., Daugbjerg, N., and Pedersen, P., 2004. Nucleotide diversity within and between four species of Laminaria (Phaeophyceae) analyzed using partial LSU and ITS rDNA sequences and AFLP. European Journal of Phycology, 39: 243–256.

    Article  Google Scholar 

  • Goff, L. J., and Moon, D. A., 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. Journal of Phycology, 29: 381–384.

    Article  Google Scholar 

  • Harper, J. T., and Saunders, G. W., 2001. Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large- and small-subunit ribosomal DNA sequence data. Journal of Phycology, 37: 1073–1082.

    Article  Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R., 2003a. Biological identifications through DNA barcodes. Proceedings of Royal Society B, 270: 313–322.

    Article  Google Scholar 

  • Hebert, P. D., Ratnasingham, S., and deWaard, J. R., 2003b. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of Royal Society B, 270: S96–S99.

    Article  Google Scholar 

  • Hu, Z. M., Guiry, M. D., and Duan, D. L., 2009. Using the ribosomal internal transcribed spacer (ITS) as a complement marker for species identification of red macroalgae. Hydrobiologia, 635: 279–287.

    Article  Google Scholar 

  • Hughey, J. R., Silva, P. C., and Hommersand, M. H., 2001. Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of Phycology, 37: 1091–1109.

    Article  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111–120.

    Article  Google Scholar 

  • Kim, M. S., Yang, M. Y., and Cho, G. Y., 2010. Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogamie, Algologie, 31(4): 387–401.

    Google Scholar 

  • Kovarik, A. J., Pires, C., Leitch, A. R., Lim, K. Y., Sherwood, A. M., Matyasek, R., Rocca, J., Soltis, D. E., and Soltis, P. S., 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics, 169: 931–944.

    Article  Google Scholar 

  • Le Gall, L., and Saunders, G. W., 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. Journal of Phycology, 46: 374–389.

    Article  Google Scholar 

  • Liu, D. Y., Wang, Z. Y., Sun, J., Huang, Z. Y., and Qian, S. B., 1999. Study of the benthic algae in the littoral of Qingdao coast. Transactions of Oceanology and Limnology, 3: 35–40.

    Google Scholar 

  • Liu, J. H., and Zhang, Y. H., 1994. A study of the benthic algae in intertidal zone islands round the east of the Shandong peninsula. Jouranl of Ocean University of Qingdao, 24(3): 384–392.

    Google Scholar 

  • Milstein, D., Medeiros, A., and Oliveira, C., 2011. Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? Journal of Phycology, DOI: 10.1007/s10811-011-9702-3.

  • Moritz, C., and Cicero, C., 2004. DNA barcoding: promise and pitfalls. PloS Biology, 2: 1529–1531.

    Article  Google Scholar 

  • Presting, G., 2006. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. Canadian Journal of Botany, 84(9): 1434–1443.

    Article  Google Scholar 

  • Robba, L., Russell, S., Baker, G., and Brodie, J., 2006. Assessing the use of the mitochondrial COX I marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of Botany, 93(8): 1101–1108.

    Article  Google Scholar 

  • Ruangchuay, R., and Notoya, M., 2007. Reproductive strategy and occurrence of gametophytes of Thai laver Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales, Rhodophyta) from Songkhla Province. Kasetsart Journal Natural Sciences, 41: 143–152.

    Google Scholar 

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Elich, H. A., 1988. Primer-directed enzymatic amplification of DNA with a thermo stable DNA polymerase. Science, 239: 487–491.

    Article  Google Scholar 

  • Saunders, G. W., 2005. Applying DNA barcoding to red macroalgae a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B, 360: 1879–1888.

    Article  Google Scholar 

  • Saunders, G. W., 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia: Botany, 86: 773–789.

    Google Scholar 

  • Sherwood, A. R., and Presting, G. G., 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria: Journal of Phycology, 43: 605–608.

    Article  Google Scholar 

  • Sherwood, A. R., Kurihara, A., Conklin, K. Y., Sauvage, T., and Presting, G. G., 2010. The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. BMC Plant Biology. http://www.biomedcentral.com/1471-2229/10/258.

  • Sonnenberg, R., Nolte, A. W., and Tautz, D., 2007. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Frontiers in Zoology, 4: 6.

    Article  Google Scholar 

  • State Oceanic Administration, People’s Republic of China, 2010. Bulletin of China’s Marine Environmental Status of China for the Year of 2010. 1 General Review. http://www.soa.gov.cn/soa/hygbml/hjgb/tenEnglish/webinfo/2011/09/1315180837414231.htm. Accessed on 2011-9-7. Line 1–2, page 1.

  • Stoeckle, M., 2003. Taxonomy, DNA, and the barcode of life. Bioscience, 53: 796–797.

    Article  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research, 22: 4673–4680.

    Article  Google Scholar 

  • Tseng, C. K., 1983. Common Seaweeds of China. Science Press, Beijing, China, preface ii.

    Google Scholar 

  • Tseng, C. K., Xia, B. M., and Zhou, X. T., 2009. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, China, 1–254 (in Chinese).

    Google Scholar 

  • Yang, Z., Wang, Y., Dong, K. S., Tang, X. X., and Zhao, X., 2009. The Survey on the community of benthic marine macroalgae. Periodical of Ocean University of China, 39(4): 647–651.

    Google Scholar 

  • Yoon, H. S., Lee, J. Y., Boo, S. M., and Bhattacharya, D., 2001. Phylogeny of Alariaceae, Laminariaceae and Lessonaceae (Phaeophyceae) based on plastid-encoding rubisco spacer and nuclear-encoded ITS sequence comparisons. Molecular Phylogenetics and Evolution, 21: 231–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Pang, S., Shan, T. et al. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China. J. Ocean Univ. China 12, 139–145 (2013). https://doi.org/10.1007/s11802-013-2052-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-2052-9

Key words

Navigation