Skip to main content
Log in

Sn doped ZnO thin films as high resistivity window layer for Cu(In,Ga)Se2 solar cells

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

For high efficiency Cu(In,Ga)Se2 (CIGS) solar cell, the high-resistivity layer with high optical transmittance has to be adopted between the buffer layer and the high-conductivity window layer. In this paper, we propose Sn doped ZnO (ZTO) film, instead of the traditional intrinsic ZnO (i-ZnO) film, as an alternative n-type high-resistivity window layer for CIGS solar cell. In this experiment, both ZTO and i-ZnO films are strong (002) oriented, and the surface morphologies of the two films are almost the same. The statistical roughnesses of i-ZnO film and ZTO film are 0.58 nm and 0.63 nm, respectively. However, the optical transmittance of ZTO film is higher than that of i-ZnO film with the same thickness. The efficiency of ZTO based CIGS cell was 14.24%, which is almost the same as the efficiency of i-ZnO based CIGS cell. These results fully suggest that it is very feasible to replace i-ZnO with ZTO as the high resistant window layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Jakapan Chantana, Yu Kawano, Takahito Nishimura, Yoshinori Kimoto, Takuya Kato, Hiroki Sugimoto and Takashi Minemoto, Progress in Photovoltaics: Research and Applications 79, 28 (2019).

    Google Scholar 

  2. Jakapan Chantana, Yu Kawano, Takahito Nishimura, Takuya Kato, Hiroki Sugimoto and Takashi Minemoto, ACS Applied Materials & Interfaces 7539, 11 (2019).

    Google Scholar 

  3. F. Chouikh, Y. Beggah, N. Tabet, N. Ariche and M.S. Aida, Materials Science in Semiconductor Processing 39, 64 (2017).

    Google Scholar 

  4. Lee Woo-Jae, Bera Susanta, Wan Zhixin, Dai Wei, Bae Jong-Seong, Hong Tae Eun, Kim Kwang-Ho, Ahn Ji-Hoon and Kwon Se-Hun, Journal of the American Ceramic Society 5881, 102 (2019).

    Google Scholar 

  5. Ingrid Repins, Stephen Glynn, Joel Duenow, Timothy J. Coutts, Wyatt K. Metzger and Miguel A. Contreras, Required Material Properties for High-Efficiency CIGS Modules, Solar Energy Technology Conference, 7409 (2009).

  6. Uwe Rau and Marion Schmidt, Thin Solid Films 141, 387 (2001).

    Google Scholar 

  7. Benjamin L. Williams, Sjoerd Smit, Bas J. Kniknie, Klaas J. Bakker, Wytze Keuning, W. M. M. Kessels, Ruud E. I. Schropp and M. Creatore, Progress in Photovoltaics: Research and Applications 1516, 23 (2015).

    Google Scholar 

  8. F. J. Pern, R. Noufi, B. To, C. DeHart, X. Li and S. H. Glick, Proceedings of SPIE-The International Society for Optical Engineering 7048, 2008.

  9. Patrick Reinhard, Adrian Chirilă, Patrick Blösch, Fabian Pianezzi, Shiro Nishiwaki, Stephan Buecheler and Ayodhya N. Tiwari, IEEE Journal of Photovoltaics 572, 3 (2012).

    Google Scholar 

  10. R. Sundaramoorthy, F.J. Pern, C. DeHart, T. Gennett and F.Y. Meng, Stability of TCO Window Layers for Thin-film CIGS Solar Cells upon Damp Heat Exposures: part II, Proceedings of SPIE-The International Society for Optical Engineering 7412, 7412J (2009).

    ADS  Google Scholar 

  11. F. J. Pern, S. H. Glick, X. Li, C. DeHart, T. Gennett, M. Contreras and T. Gessert, Stability of TCO Window Layers for Thin-Film CIGS Solar Cells upon Damp Heat Exposures — Part III, Proceedings of SPIE-The International Society for Optical Engineering 7412, 7412K (2009).

    ADS  Google Scholar 

  12. Tadatsugu Minami, Journal of Vacuum Science & Technology A Vacuum Surfaces & Films 1095, 13 (1995).

    Google Scholar 

  13. H. Enoki, T. Nakayama and J. Echigoya, Physica Status Solidi A 181, 129 (1992).

    Google Scholar 

  14. T. Minami, H. Sonohara, T. Kakumu and S. Takata, Thin Solid Films 37, 270 (1995).

    Google Scholar 

  15. J.D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B.M. Keyes, L.M. Gedvilas, P. A. Parilla, B. To, D.W. Readey and D. S. Ginley, Thin Solid Films 152, 411 (2002).

    Google Scholar 

  16. Toshihiro Moriga, Yukako Hayashi, Kumiko Kondo, Yusuke Nishimura, Kei-ichiro Murai and Ichiro Nakabayashi, Journal of Vacuum Science & Technology A 1705, 22 (2004).

    Google Scholar 

  17. David L. Young, Helio Moutinho, Yanfa Yan and Timothy J. Coutts, Journal of Applied Physics 92, 310 (2002).

    Article  ADS  Google Scholar 

  18. Chang Shao-Wei, Ishikawa Kaoru and Sugiyama Mutsumi, Thin Solid Films 408, 589 (2015).

    Google Scholar 

  19. Song Bin-Bin, Yu Tao, Zhang Chuan-Sheng, Li Bo-Yan, Li Xin-Lian, Guo Kai, Zuo Ning, Zhao Shu-Li and Chen Jie, Maters Review 35, 30 (2016). (in Chinese)

    Google Scholar 

  20. Patterson A. L., Physical Review 972, 56 (1939).

    Google Scholar 

  21. Hyung Jun Cho, Sung Uk Lee, Byungyou Hong, Yong Deok Shin, Jin Young Ju, Hee Dong Kim, Mungi Park and Won Seok Choi, Thin Solid Films 2941, 518 (2010).

    Google Scholar 

  22. Falah S. Hasoon, Hamda A. Ai-Thani, Xiaonan Li, Ana Kanevce, Craig Perkins and Sally Asher, Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells, IEEE Photovoltaic Specialists Conference. IEEE, 33rd (2008).

  23. Tokio Nakada, MRS Online Proceeding Library Archive, 668 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie Lin  (林列).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, By., Liu, Ff. & Lin, L. Sn doped ZnO thin films as high resistivity window layer for Cu(In,Ga)Se2 solar cells. Optoelectron. Lett. 16, 451–454 (2020). https://doi.org/10.1007/s11801-020-0054-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-0054-6

Document code

Navigation