Skip to main content
Log in

Multifunctional radio-frequency generator for cold atom experiments

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters A., Chung K. Y. and Chu S., Nature 400, 849 (1999).

    Article  ADS  Google Scholar 

  2. Müller T., Gilowski M., Zaiser M., Berg P., Schubert Ch., Wendrich T., Ertmer W. and Rasel E. M., The European Physical Journal D 53, 273 (2009).

    Article  ADS  Google Scholar 

  3. Zhou L., Xiong Z. Y., Yang W., Tang B., Peng W. C., Wang Y. B., Xu P., Wang J. and Zhan M. S., Chinese Physics Letters 28, 013701 (2011).

    Article  ADS  Google Scholar 

  4. Cao Q., Luo X. Y., Gao K. Y., Wang X. R., Chen D. M. and Wang R. Q., Chinese Physics B 21, 043203 (2012).

    Article  ADS  Google Scholar 

  5. Anderson M. H., Petrich W., Ensher J. R. and Cornell E. A., Physical Review A 50, R3597 (1994).

    Article  ADS  Google Scholar 

  6. Butts D. L., Kotru K., Kinast J. M., Radojevic A. M., Timmons B. P. and Stoner R. E., Journal of the Optical Society America B 30, 922 (2013).

    Article  ADS  Google Scholar 

  7. Zhou M. K., Duan X. C., Chen L. L., Luo Q., Xu Y. Y. and Hu Z. K., Chinese Physics B 24, 050401 (2015).

    Article  ADS  Google Scholar 

  8. Cao Ye, Liu Ce and Tong Zheng-rong, Optoelectronics Letters 10, 401 (2014).

    Article  ADS  Google Scholar 

  9. P. J. Ungar, D. S. Weiss, E. Riis and S. Chu, Journal of the Optical Society America B 6, 2058 (1989).

    Article  ADS  Google Scholar 

  10. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  11. Kovachy T., Chiow S. and Kasevich M. A., Physical Review A 86, 011606 (2012).

    Article  ADS  Google Scholar 

  12. Goswami D., Physics Reports 374, 385 (2003).

    Article  ADS  Google Scholar 

  13. Yuan Jin, Ning Ti-gang, Li Jing, Li Yue-qin, Chen Hong-yao and Zhang Chan, Optoelectronics Letters 11, 207 (2015).

    Article  ADS  Google Scholar 

  14. http://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf

  15. Geen H. and Freeman R., Journal of Magnetic Resonance 93, 93 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hua Yan  (颜树华).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.51275523), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20134307110009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Ch., Yan, Sh. Multifunctional radio-frequency generator for cold atom experiments. Optoelectron. Lett. 12, 173–177 (2016). https://doi.org/10.1007/s11801-016-6050-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6050-1

Document code

Navigation