Skip to main content
Log in

Large-scale spatial angle measurement and the pointing error analysis

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A large-scale spatial angle measurement method is proposed based on inertial reference. Common measurement reference is established in inertial space, and the spatial vector coordinates of each measured axis in inertial space are measured by using autocollimation tracking and inertial measurement technology. According to the spatial coordinates of each test vector axis, the measurement of large-scale spatial angle is easily realized. The pointing error of tracking device based on the two mirrors in the measurement system is studied, and the influence of different installation errors to the pointing error is analyzed. This research can lay a foundation for error allocation, calibration and compensation for the measurement system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. T. Ester, K. L. Edmondson, G. N. Peggs and D. H. Parker, CIRP Annals Manufacturing Technology 51, 587 (2002).

    Article  Google Scholar 

  2. W. Cuypers, N. Van Gestel, A. Voet, J. P. Kruth, J. Mingnuau and P. Bleys, Optics and Lasers in Engineering 47, 292 (2009).

    Article  ADS  Google Scholar 

  3. Yuhe Li, Yongrong Qiu, Yanxiang Chen and Kaisen Guan, Optics and Lasers in Engineering 62, 31 (2014).

    Article  ADS  Google Scholar 

  4. Maurizio Galetto, Luca Mastrogiacomo and Domenico Maisano, CIRP Annals Manufacturing Technology 64, 483 (2015).

    Article  Google Scholar 

  5. Zuojiang Xiao, Xiaoxue Guo, Yang Xia, Zhiyong An, Haibin Zhu and Zhigang Xu, Optik 125, 4427 (2014).

    Article  ADS  Google Scholar 

  6. Qing Wang, Nick Zissler and Roger Holden. Robotics and Computer-Integrated Manufacturing 29, 1 (2013).

    Article  Google Scholar 

  7. Maher Mahmoud Abdo, Ahmad Reza Vali, Ali Reza Toloei and Mohammad Reza Arvan, ISA Transactions 53, 591 (2014).

    Article  Google Scholar 

  8. Klaus Wendt, Matthias Franke and Frank Hartig, Measurement 5, 2339 (2012).

    Article  Google Scholar 

  9. Zhang Zili, Zhu Jigui and Zhou Weihu, Optics and Precision Engineering 23, 1205 (2015). (in Chinese)

    Article  Google Scholar 

  10. Maurizio Galetto, Luca Mastrogiacomo and Barbara Pralio, International Journal of Advanced Manufacturing Technology 52, 291 (2011).

    Article  Google Scholar 

  11. Ruimin Liu, Xiqing Guo and Jin Yu, Optik 124, 1132 (2013).

    Article  ADS  Google Scholar 

  12. HU Wenchuan, QIU Zurong and ZHANG Guoxiong, Journal of Optoelectronics·Laser 24, 329 (2013). (in Chinese)

    ADS  Google Scholar 

  13. ZHANG Zhiyong, ZHOU Xiaoyao and FAN Dapeng, Acta Aeronautica et Astronautica Sinica 32, 2042 (2011). (in Chinese)

    Google Scholar 

  14. A. Brennan, J. Zhang, K. Deluzio and Q. Li, Gait & Posture 34, 320 (2011).

    Article  Google Scholar 

  15. Minghuan Guo, Zhifeng Wang, Jianhan Zhang, Feihu Sun and Xiliang Zhang, Solar Energy 85, 1091 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-xi Ma  (马东玺).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.51305455).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Wj., Chen, Zb., Ma, Dx. et al. Large-scale spatial angle measurement and the pointing error analysis. Optoelectron. Lett. 12, 229–232 (2016). https://doi.org/10.1007/s11801-016-6028-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6028-z

Document code

Navigation