Skip to main content
Log in

The Global k-Means Clustering Analysis Based on Multi-Granulations Nearness Neighborhood

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Multi-Granulations nearness approximation space is a new generalized model of approximation spaces, in which topology neighborhoods are induced by multi probe functions with many category features. In this paper, by combining global k-means clustering algorithms and topology neighborhoods, two k-means clustering algorithms are proposed, in which AFS topology neighborhoods are employed to determine the clustering initial points. The proposed method can be applied to the data sets with numerical, Boolean, linguistic rating scale, sub-preference relations features. The illustrative examples show that the proposed method is effective for clustering problems, and can enrich the applicable field on the idea of qualitatively near.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anwar, S., Patnaik, K.S.: Actor critic learning: a near set approach. In: Chan, C.C. et al., (eds.) Rough Sets and Current Trends in Computing 2008, LNAI, vol. 5306, pp. 252–261, Springer, Heidelberg (2008)

  2. Asuncion, A., Newman, D.: UCI Machine Learning Repository, Univ. California at Irvine, Irvine, CA, 2007 (Online). Available: http://www.ics.uci.edu/mlearn/MLRepository.html

  3. Bagirov A.M.: Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn. 41, 3192–3199 (2008)

    Article  MATH  Google Scholar 

  4. Hassanien A.E., Abraham A., Peters J.F. et al.: Rough sets and near sets in medical imaging: a review. IEEE T. Inf. Technol. B 13(6), 955–968 (2009)

    Article  Google Scholar 

  5. Henry C.: Near Sets: Theory and Applications, Doctor of Philosophy in Electrical and Computer Engineering. University of Manitoba Winnipeg, Canada (2010)

    Google Scholar 

  6. http://en.wikipedia.org/wiki/Nearsets

  7. Kelley J.L.: General Topology. Springer, New York (1955)

    MATH  Google Scholar 

  8. Likas A., Vlassis M., Verbeek J.: The global k-means clustering algorithm. Pattern Recogn. 36, 451–461 (2003)

    Article  Google Scholar 

  9. Liu, H.C., Wu, D.B., Yih, J.M., Liu, S.W.: Fuzzy c-Mean Algorithm Based on Complete Mahalanobis Distances and Separable Criterion, The Fifth International Conference on Fuzzy System and Knowledge Discovery 2008, Jinan, China, 18–20 Oct., 2008, pp. 87–91

  10. Liu X.D.: The fuzzy theory based on AFS algebras and AFS structure. J. Math. Anal. Appl. 217, 459–478 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu X.D.: The topology on AFS algebra and AFS structure. J. Math. Anal. Appl. 217, 479–489 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu X.D.: The fuzzy sets and systems based on AFS structure, EI algebra and EII algebra. Fuzzy Set Syst. 95, 179–188 (1998)

    Article  MATH  Google Scholar 

  13. Liu, X.D., Pedrycz, W.: Axiomatic Fuzzy Set Theory and Its Applications. Studies in Fuzziness and Soft Computing, vol. 244. Springer, Berlin (2009)

  14. Liu X.D., Ren Y.: Novel artificial intelligent techniques via AFS theory: Feature selection, concept categorization and characteristic description. Appl. Soft Comput. 10, 793–805 (2010)

    Article  Google Scholar 

  15. Lopez-Escobar, S., Carrasco-Ochoa J.A., Martinez-Trinidad J. F.: Fast Global k-Means with similarity functions algorithm. In: Corchado, E., et al., (eds.) IDEAL 2006, LNCS, vol. 4224, pp. 512–521 (2006)

  16. Lozano J.A., Pena J.M., Larranaga P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn. Lett. 20, 1027–1040 (1999)

    Article  Google Scholar 

  17. Naimpally S.A., Peters J.F.: Topology with applications. Topological structures via near and far. World Scientific, Singapore (2012)

    Google Scholar 

  18. Pawlak Z., Peters J.F.: Jak blisko (how near). Systemy Wspomagania Decyzji. I 57, 109 (2002)

    Google Scholar 

  19. Peters J.F.: Classification of perceptual objects by means of features. Int. J. IT&IC. 3(2), 1–35 (2008)

    Google Scholar 

  20. Peters J.F.: Near sets. Special theory about nearness of objects. . Fundam. Inform. 75(1-4), 407–433 (2007)

    MATH  Google Scholar 

  21. Peters, J.F., et al.: Near sets. Toward approximation space-based object recognition. In: Yao, J., Lingras, P., Wu, W. (eds.) LNAI, vol. 4481, pp. 22–33. Springer, Berlin (2007)

  22. Peters J.F.: Near sets. General theory about nearness of objects. Appl. Math. Sci. 1(53), 2609–2629 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Peters J.F., Naimpally S.A.: Applications of near sets. Am. Math. Soc. Notices 59(4), 536–542 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Qian Y.H., Liang J.Y., Dang C.Y.: Incomplete multigranulation rough set. IEEE T. Syst. Man. Cy. A 40(2), 420–430 (2010)

    Article  Google Scholar 

  25. Qian Y.H., Liang J.Y., Yao Y.Y., Dang C.Y.: MGRS: A multi-granulation rough set. Inf. Sci. 180(6), 949–970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, W.R., Liu X.D., Zhang, Z.Y.: Fuzzy Clustering Based on AFS Topology and AFCM, Fuzzy Systems and Mathematics 24(4), 101–107 (2010) (in Chinese)

  27. Tzortzis G.F., Likas A.C.: The global kernel k-means algorithm for clustering in feature space. IEEE T Neural Netw. 20(7), 1181–1194 (2009)

    Article  Google Scholar 

  28. Wang, L.D., Liu, X.D., Tian, X.J.: A generalization of near set model, RSKT 2011, LNCS, vol. 6954, pp. 553–558 (2011)

  29. Wang L.D., Liu X.D., Qiu W.R.: Nearness approximation space based on axiomatic fuzzy sets. Int. J. Approx. Reason. 53, 200–211 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang L.D., Ren Y., Liu X.D.: Development of near sets within the framework of axiomatic fuzzy sets. Fundam. Inform. 118(3), 291–304 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Wang, W.N. Zhang, Y.J., Li, Y., Zhang, X.N.: The global fuzzy c-means clustering algorithm. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21–23, 2006, pp. 3604–3607. Dalian, China (2006)

  32. Wolski M.: Perception and classification. A note on near sets and rough sets. Fund. Inform. 101, 143–155 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Wolski M.: Granular Computing: Topological and Categorical Aspects of Near and Rough Set Approaches to Granulation of Knowledge. Trans. Rough Sets 7736, 37–53 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Wang.

Additional information

Springer Mathematics in Computer Science Special Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Liu, X. & Mu, Y. The Global k-Means Clustering Analysis Based on Multi-Granulations Nearness Neighborhood. Math.Comput.Sci. 7, 113–124 (2013). https://doi.org/10.1007/s11786-013-0150-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-013-0150-0

Keywords

Mathematics Subject Classification (2010)

Navigation