Skip to main content
Log in

Total Nonnegativity of Infinite Hurwitz Matrices of Entire and Meromorphic Functions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we completely describe functions generating the infinite totally nonnegative Hurwitz matrices. In particular, we generalize the well-known result by Asner and Kemperman on the total nonnegativity of the Hurwitz matrices of real stable polynomials. An alternative criterion for entire functions to generate a Pólya frequency sequence is also obtained. The results are based on a connection between a factorization of totally nonnegative matrices of the Hurwitz type and the expansion of Stieltjes meromorphic functions into Stieltjes continued fractions (regular \(C\)-fractions with positive coefficients).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In general, the condition to be meromorphic is replaced by less restrictive \(F(\overline{z})=\overline{F(z)}\). Basic properties of \(\mathcal {R}\)-functions can be found, for example, in [14] and (for the meromorphic case) in [23]. In this paper we confine ourselves to meromorphic functions only.

  2. The notation \([a]\) stands for the integer part of \(a\).

  3. The same transformation also allows us to express the formulae (12)–(13) from [19, p. 121] as the relation (2.5).

  4. The separate convergence of numerators and denominators was shown by Śleszyński in [20].

  5. This fact was obtained by Maillet in [18]; see also [19, p. 150].

  6. In fact, even an estimate stronger than (2.17) is valid (cf. [20, p. 105]). For each tuple of distinct numbers \((i_1,i_2,\dots ,i_k)\) there is only one summand \(\Big (\sigma _{i_1}^{(j)}\sigma _{i_2}^{(j)}\cdots \sigma _{i_k}^{(j)}\Big )^{-1}\) in the right-hand side of (2.16). At the same time, the sum

    $$\begin{aligned} \sum _{i_1=1}^\infty \sum _{i_2=1}^\infty \dots \sum _{i_k=1}^\infty \Big (\sigma _{i_1}^{(j)} \sigma _{i_2}^{(j)} \cdots \sigma _{i_k}^{(j)}\Big )^{-1} \end{aligned}$$

    contains exactly \(k!\) such summands. Therefore,

    $$\begin{aligned} a_k^{(j)}< \frac{1}{k!} \left( a_1^{(j)}\right) ^{k} \text { for }k=2,3,4,\dots . \end{aligned}$$

References

  1. Aissen, M., Edrei, A., Schoenberg, I.J., Whitney, A.: On the generating functions of totally positive sequences. Proc. Natl. Acad. Sci. USA 37, 303–307 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aissen, M., Schoenberg, I.J., Whitney, A.M.: On the generating functions of totally positive sequences I. J. Anal. Math. 2, 93–103 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asner, B.A. Jr.: On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math. 18(2), 407–414 (1970)

    Google Scholar 

  4. Chebotarev, N.G. (Tschebotareff): Über die Realität von Nullstellen ganzer transzendenter Funktionen. Math. Ann. 99, 660–686 (1928) (German)

    Google Scholar 

  5. Chebotarev, N.G., Meĭman, N.N.: The Routh-Hurwitz problem for polynomials and entire functions. Trudy Mat. Inst. Steklova 26, Acad. Sci. USSR, Moscow-Leningrad (1949) (Russian)

  6. Conway, J.B.: Functions of one complex variable, 2nd edn. In: Graduate Texts in Mathematics, vol. 11. Springer, New York (1978)

  7. Edrei, A.: On the generating functions of totally positive sequences II. J. Anal. Math. 2, 104–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea Publishing Co., New York (1959) (translated by Hirsch, K.A.)

  9. Grommer, J.: Ganze transzendente Funktionen mit lauter reellen Nullstellen. J. Reine Angew. Math. 144, 114–166 (1914) (German)

    Google Scholar 

  10. Holtz, O.: Hermite-Biehler, Routh-Hurwitz, and total positivity. Linear Algebra Appl. 372, 105–110 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holtz, O., Tyaglov, M.: Structured matrices, continued fractions, and root localization of polynomials. SIAM Rev. 54(3), 421–509 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hurwitz, A.: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. In: Jeltsch, R., et al. (eds.) Stability Theory. Hurwitz Centenary Conference, Ascona, Switzerland, May 21–26, 1995. Int. Ser. Numer. Math. vol. 121, pp. 239–249. Birkhäuser, Basel (1996). Reprinted from Math. Ann. 46, 273–284 (1895) (German)

  13. Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  14. Kac, I.S., Kreĭn, M.G.: R-functions—analytic functions mapping the upper halfplane into itself. Supplement I to the Russian edition of Atkinson, F.V., Discrete and continuous boundary problems. Mir, Moscow, pp. 629–647 (1968) (Russian). English translation in Am. Math. Soc. Transl. 103(2), 1–18 (1974)

  15. Kreĭn, M.G.: Concerning a special class of entire and meromorphic functions. Article VI in Akhiezer, N.I., Kreĭn, M.G. Some questions in the theory of moments. GNTIU, Kharkov, 1938 (Russian). English translation by Fleming, W. and Prill, D. Translations of Mathematical Monographs, vol. 2. Amer. Math. Soc., Providence (1962)

  16. Kemperman, J.H.B.: A Hurwitz matrix is totally positive. SIAM J. Math. Anal. 13(2), 331–341 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Leighton, W., Scott, W.T.: A general continued fraction expansion. Bull. Am. Math. Soc. 45, 596–605 (1939)

    Article  MathSciNet  Google Scholar 

  18. Maillet, E.: Sur les fractions continues algébriques. J. éc. pol. 12(2), 41–62 (1908)

    Google Scholar 

  19. Perron, O.: Die Lehre von den Kettenbrüchen. Band II, B.G. Teubner Verlagsgesellschaft, Stuttgart (1957) (German)

  20. Śleszyński, J. (Sleshinsky, I.V.): Convergence of continued fractions. Zap. Mat. Otdel. Novoross. Obshch. Estest. Odessa 8, 97–127 (1888) (Russian)

  21. Stieltjes, T.-J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8, J1–122 (1894), and 9, A1–47 (1895) (French)

    Google Scholar 

  22. Wall, H.S.: Analytic Theory of Continued Fractions. D. Van Nostrand Company Inc., New York (1948)

    MATH  Google Scholar 

  23. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53(2), 36–67 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  24. Worpitzky, J.D.T: Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbrüche. Jahresbericht Friedrichsgymnasium u. Realschule, Berlin (1865), 3–39 (German)

Download references

Acknowledgments

The author is grateful to Olga Holtz and Mikhail Tyaglov for helpful comments and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dyachenko.

Additional information

Communicated by Daniel Aron Alpay.

This work was financially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 259173.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyachenko, A. Total Nonnegativity of Infinite Hurwitz Matrices of Entire and Meromorphic Functions. Complex Anal. Oper. Theory 8, 1097–1127 (2014). https://doi.org/10.1007/s11785-013-0344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-013-0344-0

Keywords

Mathematics Subject Classification (2010)

Navigation