Skip to main content
Log in

Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator-prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antiqueira P A P, Petchey O L, Dos Santos V P, De Oliveira Valéria m, Romero G Q (2018). Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Global Change Biology, 24(8): 3715–3728

    Article  Google Scholar 

  • Baselga A (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1): 134–143

    Article  Google Scholar 

  • Baselga A, Orme C D L (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5): 808–812

    Article  Google Scholar 

  • Bista I, Carvalho G R, Walsh K, Seymour M, Hajibabaei M, Lallias D, Christmas M, Creer S (2017). Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 8: 14087

    Article  CAS  Google Scholar 

  • Bonaglia S, Nascimento F J A, Bartoli M, Klawonn I, Brüchert V (2014). Meiofauna increases bacterial denitrification in marine sediments. Nature Communications, 5: 5133

    Article  CAS  Google Scholar 

  • Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336

    Article  CAS  Google Scholar 

  • Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q (2018). Bacterial communities in riparian sediments: A large-scale longitudinal distribution pattern and response to dam construction. Frontiers in Microbiology, 9: 999

    Article  Google Scholar 

  • Chen M, Chen F, Zhao B, Wu Q L, Kong F (2010). Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China. Aquatic Ecology, 44: 1–12

    Article  CAS  Google Scholar 

  • Chen Q, Shi W, Huisman J, Maberly S C, Zhang J, Yu J, Chen Y, Tonina D, Yi Q (2020). Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. National Science Review, 7(9): 1449–1457

    Article  CAS  Google Scholar 

  • Domingues C D, da Silva L H S, Rangel L M, de Magalhães L, de Melo Rocha A, Lobão L M, Paiva R, Roland F, Sarmento H (2017). Microbial food-web drivers in tropical reservoirs. Microbial Ecology, 73: 505–520

    Article  Google Scholar 

  • dos Santos N C L, García-Berthou E, García-Berthou J D, Dias T M, Lopes I D P, Affonso W, Severi L C, Gomes A, Agostinho A (2018). Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia, 819: 77–91

    Article  Google Scholar 

  • Edgar R C (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England), 26(19): 2460–2461

    CAS  Google Scholar 

  • Gao Q, Tao Z, Shen C, Sun Y, Yi W, Xing C (2002). Riverine organic carbon in the Xijiang River (South China): seasonal variation in content and flux budget. Environmental Geology, 41: 826–832

    Article  CAS  Google Scholar 

  • Grenouillet G, Brosse S, Tudesque L, Lek S, Baraille Y, Loot G (2008). Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity & Distributions, 14(4): 592–603

    Article  Google Scholar 

  • Handley K M (2019). Determining microbial roles in ecosystem function: Redefining microbial food webs and transcending kingdom barriers. mSystems, 4(3): e00153–19

    Article  CAS  Google Scholar 

  • Jamoneau A, Passy S I, Soininen J, Leboucher T, Tison-Rosebery J (2018). Beta diversity of diatom species and ecological guilds: Response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 63: 62–73

    Article  Google Scholar 

  • Kathol M, Fischer H, Weitere M (2011). Contribution of biofilm-dwelling consumers to pelagic-benthic coupling in a large river. Freshwater Biology, 56(6): 1160–1172

    Article  Google Scholar 

  • Kavazos C R J, Huggett M J, Mueller U, Horwitz P (2018). Bacterial and ciliate biofilm community structure at different spatial levels of a salt lake meta-community. FEMS Microbiology Ecology, 94(10): fiy148

    Article  CAS  Google Scholar 

  • Keeley N, Wood S A, Pochon X (2018). Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecological Indicators, 85: 1044–1057

    Article  CAS  Google Scholar 

  • Kiljunen M, Peltonen H, Lehtiniemi M, Uusitalo L, Sinisalo T, Norkko J, Kunnasranta M, Torniainen J, Rissanen A J, Karjalainen J (2020). Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs. Limnology and Oceanography, 65(8): 1706–1722

    Article  CAS  Google Scholar 

  • Li J, Dong S, Yang Z, Peng M, Liu S, Li X (2012). Effects of cascade hydropower dams on the structure and distribution of riparian and upland vegetation along the middle-lower Lancang-Mekong River. Forest Ecology and Management, 284: 251–259

    Article  Google Scholar 

  • Li Y, Gal G, Makler-Pick V, Waite A M, Bruce L C, Hipsey M R (2014). Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11): 2939–2960

    Article  CAS  Google Scholar 

  • Lischke B, Mehner T, Hilt S, Attermeyer K, Brauns M, Brothers S, Grossart H P, Köhler J, Scharnweber K, Gaedke U (2017). Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes. Freshwater Biology, 62(10): 1693–1706

    Article  CAS  Google Scholar 

  • Maavara T, Chen Q, Van Meter K, Brown L E, Zhang J, Ni J, Zarfl C (2020). River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 1: 103–116

    Article  Google Scholar 

  • Martinez-Almoyna C, Thuiller W, Chalmandrier L, Ohlmann M, Foulquier A, Clément J C, Zinger L, Münkemüller T (2019). Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33(10): 2053–2064

    Article  Google Scholar 

  • Middelburg J J (2018). Reviews and syntheses: to the bottom of carbon processing at the seafloor. Biogeosciences, 15: 413–427

    Article  CAS  Google Scholar 

  • Moitra M, Leff L (2015). Bacterial community composition and function along a river to reservoir transition. Hydrobiologia, 747: 201–215

    Article  CAS  Google Scholar 

  • Molina V, Morales C E, Farías L, Cornejo M, Graco M, Eissler Y, Cuevas L A (2012). Potential contribution of planktonic components to ammonium cycling in the coastal area off central-southern Chile during non-upwelling conditions. Progress in Oceanography, 92–95: 43–49

    Article  Google Scholar 

  • Montagna M, Berruti A, Bianciotto V, Cremonesi P, Giannico R, Gusmeroli F, Lumini E, Pierce S, Pizzi F, Turri F, Gandini G (2018). Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Molecular Ecology, 27(18): 3671–3685

    Article  Google Scholar 

  • Mor J R, Ruhí A, Tornés E, Valcárcel H, Muñoz I, Sabater S (2018). Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment, 625: 301–310

    Article  CAS  Google Scholar 

  • Mori A S, Isbell F, Seidl R (2018). β-Diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33(7): 549–564

    Article  Google Scholar 

  • Oliverio A M, Power J F, Washburne A, Cary S C, Stott M B, Fierer N (2018). The ecology and diversity of microbial eukaryotes in geothermal springs. The ISME journal, 12(8): 1918–1928

    Article  Google Scholar 

  • Özen A, Tavsanoğlu Ü N, Çakiroğlu A İ, Levi E E, Jeppesen E, Beklioğlu M (2018). Patterns of microbial food webs in Mediterranean shallow lakes with contrasting nutrient levels and predation pressures. Hydrobiologia, 806: 13–27

    Article  Google Scholar 

  • Palmer M, Ruhi A (2019). Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 365 (6459): eaaw2087

    Article  CAS  Google Scholar 

  • Pusceddu A, Fiordelmondo C, Danovaro R (2005). Sediment resuspension effects on the benthic microbial loop in experimental microcosms. Microbial Ecology, 50(4): 602–613

    Article  Google Scholar 

  • Ritz S, Eßer M, Arndt H, Weitere M (2017). Large-scale patterns of biofilm-dwelling ciliate communities in a river network: Only small effects of stream order. International Review of Hydrobiology, 102 (5–6): 114–124

    Article  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4: e2584

    Article  Google Scholar 

  • Schmidt R, Ulanova D, Wick L Y, Bode H B, Garbeva P (2019). Microbe-driven chemical ecology: Past, present and future. The ISME journal, 13(11): 2656–2663

    Article  Google Scholar 

  • Schratzberger M, Ingels J (2018). Meiofauna matters: The roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 502: 12–25

    Article  Google Scholar 

  • Singh D, Slik J W F, Jeon Y S, Tomlinson K W, Yang X, Wang J, Kerfahi D, Porazinska D L, Adams J M (2019). Tropical forest conversion to rubber plantation affects soil micro- & mesofaunal community & diversity. Scientific Reports, 9: 5893

    Article  Google Scholar 

  • Socolar J B, Gilroy J J, Kunin W E, Edwards D P (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31(1): 67–80

    Article  Google Scholar 

  • Šolić M, Šantić D, Šestanović S, Bojanić N, Jozić S, Ordulj M, Vrdoljak Tomaš A, Kušpilić G (2020). Changes in the trophic pathways within the microbial food web in the global warming scenario: an experimental study in the Adriatic Sea. Microorganisms, 8(4): 510

    Article  Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones M D M, Breiner H W, Richards T A (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19(s1): 21–31

    Article  CAS  Google Scholar 

  • Thingstad T F, Bellerby R G J, Bratbak G, Børsheim K Y, Egge J K, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa R A, Skjoldal E F, Tanaka T, Thyrhaug R, Töpper B (2008). Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature, 455(7211): 387–390

    Article  CAS  Google Scholar 

  • Timpe K, Kaplan D (2017). The changing hydrology of a dammed Amazon. Science Advances, 3(11): e1700611

    Article  Google Scholar 

  • van Dael T, De Cooman T, Verbeeck M, Smolders E (2020). Sediment respiration contributes to phosphate release in lowland surface waters. Water Research, 168: 115168

    Article  CAS  Google Scholar 

  • Volvoikar S P, Nayak G N, Mazumdar A, Peketi A (2014). Reconstruction of depositional environment of a tropical estuary and response of δ13Corg and TOC/TN signatures to changing environmental conditions. Estuarine, Coastal and Shelf Science, 139: 137–147

    Article  CAS  Google Scholar 

  • Wang X, Wang P, Wang C, Chen J, Miao L, Yuan Q, Liu S, Feng T (2020). Do bacterioplankton respond equally to different river regulations? A quantitative study in the single-dammed Yarlung Tsangpo River and the cascade-dammed Lancang River. Environmental Research, 191: 110194

    Article  CAS  Google Scholar 

  • Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, Traunspurger W, Walterscheid A, Wey J K (2018). The food web perspective on aquatic biofilms. Ecological Monographs, 88(4): 543–559

    Article  Google Scholar 

  • Worden A Z, Follows M J, Giovannoni S J, Wilken S, Zimmerman A E, Keeling P J (2015). Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 347(6223): 1257594

    Article  Google Scholar 

  • Wu B, Tian J, Bai C, Xiang M, Sun J, Liu X (2013). The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. The ISME journal, 7(7): 1299–1309

    Article  CAS  Google Scholar 

  • Yang N, Li Y, Zhang W, Lin L, Qian B, Wang L, Niu L, Zhang H (2020). Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Research, 170: 115351

    Article  CAS  Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89 (6): 670–679

    Article  CAS  Google Scholar 

  • Zhang F, Zhang H, Yuan Y, Liu D, Zhu C, Zheng D, Li G, Wei Y, Sun D (2020a). Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering, 14: 28

    Article  Google Scholar 

  • Zhang Y, Pavlovska M, Stoica E, Prekrasna I, Yang J, Slobodnik J, Zhang X, Dykyi E (2020b). Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environment International, 135: 105307

    Article  Google Scholar 

  • Zou K, Thébault E, Lacroix G, Barot S (2016). Interactions between the green and brown food web determine ecosystem functioning. Functional Ecology, 30(8): 1454–1465

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51779076 and 51879079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Additional information

Highlights

• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding.

• Discontinuity and trophic interactions were observed along the dam-fragmented river.

• C, N and P cycles are driven by top-down and bottom-up forces of microbial food web.

• Pelagic-benthic coupling may intensify nutrient accumulation in the river system.

Supporting Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Wang, L., Lin, L. et al. Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river. Front. Environ. Sci. Eng. 16, 50 (2022). https://doi.org/10.1007/s11783-021-1484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1484-5

Keywords

Navigation