Skip to main content
Log in

Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The considerable compounds content, abundance, and low costs involved has led to the proposal to use sewage sludge as raw material for biodiesel production. The transesterification reaction is catalyzed using an acid catalyst instead of base catalysts because of the high free fatty acid concentration. However, the use of a base catalyst, particularly a solid base catalyst, has certain advantages, including faster reaction speed and easier separation. In this study, we utilize in situ transesterification by base catalyst (KOH, KOH/activated carbon (AC) and KOH/CaO) with sewage sludge as raw material. Many conditions have been tested to increase biodiesel yield through single-factor tests, including mass fraction and catalyst dosage. Preliminary experiments have optimized reaction time and temperature. However, the three catalysts did not work better than H2SO4, which had a maximum yield of 4.6% (dry sewage sludge base) considering the purity by KOH, KOH/CaO, and KOH/AC. The features of the catalyst were analyzed using XRD, BETand SEM. As to BETof KOH/AC and the good spiculate formation of KOH crystal appears to be essential to its function. As for KOH/CaO, the formation of K2O and absorption points is likely essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan S, Kim M, Salley S O, Ng K Y S. Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A, General, 2009, 360(2): 163–170

    Article  CAS  Google Scholar 

  2. Knothe G. Introduction. In: Knothe G, Krahl J, Gerpen J V, eds. Biodiesel Handbook. Champaign, IL: AOCS Press, 2005, 1–3

    Chapter  Google Scholar 

  3. Vyas A P, Verma J L, Subrahmanyam N. A review on FAME production processes. Fuel, 2010, 89(1): 1–9

    Article  CAS  Google Scholar 

  4. Siddiquee M N, Rohani N J. Lipid extraction and biodiesel production from municipal sewage sludges: a review. Renewable & Sustainable Energy Reviews, 2011, 15(2): 1067–1072

    Article  CAS  Google Scholar 

  5. Xue F, Zhang X, Luo H, Tan T. A new method for preparing raw material for biodiesel production. Process Biochemistry, 2006, 41(7): 1699–1702

    Article  CAS  Google Scholar 

  6. Haas M J, Scott K M, Foglia T A, Marmer W N. The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks. Journal of the American Oil Chemists’ Society, 2007, 84(10): 963–970

    Article  CAS  Google Scholar 

  7. Revellame E, Hernandez R, French W, Holmes W A E, Alley E. Biodiesel from activated sludge through in situ transesterification. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(5): 614–620

    Article  CAS  Google Scholar 

  8. Liu B, Zhao Z. Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2007, 82(8): 775–780

    Article  CAS  Google Scholar 

  9. Jardé E, Mansuy L, Faure P. Organic markers in the lipidic fraction of sewage sludges. Water Research, 2005, 39(7): 1215–1232

    Article  Google Scholar 

  10. Wright D A. Activated Sludge MOP OM-9. 2nd ed. Alexandria, Virginia: Water Environment Federation, 2002

    Google Scholar 

  11. Xu G, Zhang B, Liu S, Yue J. Study on immobilized lipase catalyzed transesterification reaction of tung oil. Agricultural Sciences in China, 2006, 5(11): 859–864

    Article  CAS  Google Scholar 

  12. Haas M J, Foglia T A. Biodiesel production. In: Biodiesel Handbook. Champaign, IL: AOCS Press, 2005, 42–61

    Google Scholar 

  13. Mondala A, Liang K, Toghiani H, Hernandez R, French T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technology, 2009, 100(3): 1203–1210

    Article  CAS  Google Scholar 

  14. Charoenchaitrakool M, Thienmethangkoon J. Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process. Fuel Processing Technology, 2011, 92(1): 112–118

    Article  CAS  Google Scholar 

  15. Jena P C, Raheman H, Prasanna Kumar G V, Machavaram R. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass and Bioenergy, 2010, 34(8): 1108–1116

    Article  CAS  Google Scholar 

  16. Nakpong P, Wootthikanokkhan S. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 2010, 35(8): 1682–1687

    Article  CAS  Google Scholar 

  17. Yang Y N, Li H. Recovering humic substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer. Frontiers of Environmental Science & Engineering, 2016, 10(3): 578–584

    Article  CAS  Google Scholar 

  18. Dufreche S, Hernandez R, French T, Sparks D, Zappi M, Alley E. Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. Journal of the American Oil Chemists’ Society, 2007, 84(2): 181–187

    Article  CAS  Google Scholar 

  19. Boocock D G B, Konar S K, Leung A, Ly L D. Fuels and chemicals from sewage sludge: 1.The solvent extraction and composition of a lipid from raw sewage sludge. Fuel, 1992, 71(11): 1283–1289

    Article  CAS  Google Scholar 

  20. Qi J, Zhu F, Wei X, Zhao L, Xiong Y, Wu X. In situ transesterification of sewage sludge from A2/O and MBR processes for biodiesel production. Waste Management, 2016, 49(4): 212–220

    Article  CAS  Google Scholar 

  21. Pastore C, Lopez A, Lotito V, Mascolo G. Biodiesel from dewatered wastewater sludge: a two-step process for a more advantageous production. Chemosphere, 2013, 92(6): 667–673

    Article  CAS  Google Scholar 

  22. Nuithitikul K, Prasitturattanachai W. Activity of sulfated aluminium- tin mixed oxides for the esterification of free fatty acids in crude palm oil. International Journal of Green Energy, 2014, 11(10): 1097–1106

    Article  CAS  Google Scholar 

  23. Islam A, Taufiq-Yap Y H, Chu C M, Chan E S, Ravindra P. Studies on design of heterogeneous catalysts for biodiesel production. Process Safety and Environmental Protection, 2013, 91(1–2): 131–144

    Article  CAS  Google Scholar 

  24. Juan J C, Kartika D A, Wu T Y, Hin T Y. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresource Technology, 2011, 102(2): 452–460

    Article  CAS  Google Scholar 

  25. El-Mashad H M, Zhang R, Avena-Bustillos R J. A two-step process for biodiesel production from salmon oil. Biosystems Engineering, 2008, 99(2): 220–227

    Article  Google Scholar 

  26. Hincapié G, Mondragón F, López D. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel, 2011, 90(4): 1618–1623

    Article  Google Scholar 

  27. Kargbo D M. Biodiesel production from municipal sewage sludges: a review. Energy & Fuels, 2010, 24(5): 2791–2794

    Article  CAS  Google Scholar 

  28. Wang Y, Feng S, Bai X, Zhao J, Xia S. Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Management (New York, N.Y.), 2016, 47(Pt A): 91–97

    Article  CAS  Google Scholar 

  29. Haas M J, Scott K M, Marmer W N, Foglia T A. In situ alkaline transesterification: an effective method for the production of fatty acid esters from vegetable oils. Journal of the American Oil Chemists’ Society, 2004, 81(1): 83–89

    Article  CAS  Google Scholar 

  30. Yang L, Lv P, Yuan Z, Luo W, Li H. Different catalysts loaded with KOH for catalytic and synthesis of biodiesel. Chemical Industry and Engineering Progress, 2012, 31(91): 90–94

    Google Scholar 

  31. Babu N S, Sree R, Prasad P S, Lingaiah N. Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 2008, 22(3): 1965–1971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study is supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2013ZX07314-001-006-01); Fundamental Research Funds for the Central Universities (No. 51308538); and the Research Funds of Renmin University of China (No. 15XNLD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenfen Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhu, F., Qi, J. et al. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO. Front. Environ. Sci. Eng. 11, 3 (2017). https://doi.org/10.1007/s11783-017-0913-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0913-y

Keywords

Navigation