Skip to main content
Log in

Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The salt-tolerant Staphylococcus cohnii strain, isolated from textile wastewater, has been found effective on decolorizing several kinds of azo dyes with different structures. The optimal conditions for azo dye acid red B (ARB) decolorization by S. cohnii were determined to be pH = 7.0 and 30°C. The decolorization efficiency increased with the increase of the salinity concentration, and around 90% of ARB (100 mg·L−1) could be decolorized in 24 h when the salinity concentration was up to 50 g·L−1. Moreover, the strain could still decolorize 19% of ARB in 24 h even when the NaCl concentration was increased to 150 g·L−1. Meanwhile, the dependence of the specific decolorization rate by S. cohnii on the ARB concentration could be described with Michaelis-Menten kinetics (K m = 585.7mg·L−1, V max = 109.8 mg·g cell−1·h−1). The addition of quinone redox mediator, named 2-hydroxy-1,4-naphthoquinone and anthraquinone-2,6-disulfonate, significantly accelerated the decolorization performance of S. cohnii. Furtherly, the activities of azoreductase (0.55 μmol·mg protein−1·min−1) and Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase (8.9 μmol·mg protein−1·min−1) have been observed in the crude cell extracts of S. cohnii. The decolorization products of ARB were analyzed by HPLC-MS, and the results indicated the reductive pathway was responsible for azo dye decolorization by S. cohnii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 2001, 56(1–2): 69–80

    Article  CAS  Google Scholar 

  2. Wang X, Cheng X, Sun D, Qi H. Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. Journal of Environmental Sciences (China), 2008, 20 (10): 1218–1225

    Article  CAS  Google Scholar 

  3. Hu T L. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Science and Technology, 2001, 43(2): 261–269

    CAS  Google Scholar 

  4. O’Neill C, Lopez A, Esteves S, Hawkes F R, Hawkes D L, Wilcox S. Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Applied Microbiology and Biotechnology, 2000, 53(2): 249–254

    Article  Google Scholar 

  5. Ogugbue C J, Sawidis T, Oranusi N A. Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecological Engineering, 2010, 37(12): 2056–2060

    Article  Google Scholar 

  6. EPA. Profile of the textile industry. Environmental Protection Agency, Washington, DC. 1997

    Google Scholar 

  7. Dubrow S F, Boardman G D, Michelsen D L. Chemical pretreatment and aerobic-anaerobic degradation of textile dye wastewater. In: Reife A, Freeman H S, eds. Environmental Chemistry of Dyes and Pigments. New York: Wiley, 1996, 75–102

    Google Scholar 

  8. dos Santos A B, Cervantes F J, van Lier J B. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 2007, 98(12): 2369–2385

    Article  Google Scholar 

  9. Jothimani P, Kalaichelvan G, Bhaskaran A, Selvaseelan D A, Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian Journal of Experimental Biology, 2003, 41(9): 1046–1067

    CAS  Google Scholar 

  10. Carmona M, Zamarro M T, Blázquez B, Durante-Rodríguez G, Juárez J F, Valderrama J A, Barragán M J, García J L, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews, 2009, 73(1): 71–133

    Article  CAS  Google Scholar 

  11. Liu G, Zhou J, Wang J, Wang X, Jin R, Lv H. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Applied Microbiology and Biotechnology, 2011, 91(2): 417–424

    Article  CAS  Google Scholar 

  12. van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnology Advances, 2009, 27(3): 256–277

    Article  Google Scholar 

  13. Saratale R G, Saratale G D, Chang J S, Govindwar S P. Bacterial decolorization and degradation of azo dyes: a review. Journal of Taiwan Institute of Chemical Engineers, 2011, 42(1): 138–157

    Article  CAS  Google Scholar 

  14. Harris L G, Foster S J, Richards R G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. European Cells & Materials, 2002, 4: 39–60

    CAS  Google Scholar 

  15. Börjesson S, Matussek A, Melin S, Löfgren S, Lindgren P E. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? Journal of Applied Microbiology, 2010, 108(4): 1244–1251

    Article  Google Scholar 

  16. Faria C, Vaz-Moreira I, Serapicos E, Nunes O C, Manaia C M. Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Science of the Total Environment, 2009, 407(12): 3876–3882

    Article  CAS  Google Scholar 

  17. Mallick S, Dutta T K. Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochemistry, 2008, 43(9): 1004–1008

    Article  CAS  Google Scholar 

  18. Mallick S, Chatterjee S, Dutta T K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology, 2007, 153(Pt 7): 2104–2115

    Article  CAS  Google Scholar 

  19. Monna L, Omori T, Kodama T. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Applied and Environmental Microbiology, 1993, 59(1): 285–289

    CAS  Google Scholar 

  20. Chen H, Hopper S L, Cerniglia C E. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology, 2005, 151(Pt 5): 1433–1441

    Article  CAS  Google Scholar 

  21. Elisangela F, Andrea Z, Fabio D G, Cristiano R M, Regina D L, Artur C P. Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. International Biodeterioration and Biodegradation, 2009, 63(3): 280–288

    Article  CAS  Google Scholar 

  22. Ayed L, Chaieb K, Cheref A, Bakhrouf A. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 2010, 260(1–3): 137–146

    Article  CAS  Google Scholar 

  23. Uddin M S, Zhou J, Qu Y, Guo J, Wang P, Zhao L. Biodecolorization of azo dye acid red B under high salinity condition. Bulletin of Environmental Contamination and Toxicology, 2007, 79(4): 440–444

    Article  CAS  Google Scholar 

  24. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876–4882

    Article  CAS  Google Scholar 

  25. Salokhe M D, Govindwar S P. Effect of carbon source on the biotransformation enzymes in Serratia marcescens. World Journal of Microbiology and Biotechnology, 1999, 15(2): 229–232

    Article  CAS  Google Scholar 

  26. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1–2): 248–254

    Article  CAS  Google Scholar 

  27. Liu G, Wang J, Lu H, Jin R, Zhou J, Zhang L. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes. Journal of Hazardous Materials, 2009, 171(1–3): 222–229

    Article  CAS  Google Scholar 

  28. Wang X, Cheng X, Sun D. Autocatalysis in reactive black 5 biodecolorization by Rhodopseudomonas palustris W1. Applied Microbiology and Biotechnology, 2008, 80(5): 907–915

    Article  CAS  Google Scholar 

  29. Kostick D S. The material flow concept for materials. Natural Resources Research, 1996, 5(4): 211–233

    Article  CAS  Google Scholar 

  30. Khalid A, Arshad M, Crowley D E. Decolorization of azo dyes by Shewanella sp. under saline conditions. Applied Microbiology and Biotechnology, 2008, 79(6): 1053–1059

    Article  CAS  Google Scholar 

  31. Amoozegar M A, Hajighasemi M, Hamedi J, Asad S, Ventosa A. Azo dye decolorization by halophilic and halotolerant microorganisms. Annals of Microbiology, 2010, 61(2): 217–230

    Article  Google Scholar 

  32. Asad S, Amoozegar M A, Pourbabaee A A, Sarbolouki M N, Dastgheib S M M. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 2007, 98(11): 2082–2088

    Article  CAS  Google Scholar 

  33. Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin M S. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation, 2008, 19(1): 15–19

    Article  CAS  Google Scholar 

  34. Dawkar V V, Jadhav U U, Ghodake G S, Govindwar S P. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation, 2009, 20(6): 777–787

    Article  CAS  Google Scholar 

  35. Gomare S S, Govindwar S P. Brevibacillus laterosporus MTCC 2298: a potential azo dye degrader. Journal of Applied Microbiology, 2009, 106(3): 993–1004

    Article  CAS  Google Scholar 

  36. Yang Y Y, Du L N, Wang G, Jia XM, Zhao Y H. The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for methyl orange and acid yellow 199 under microaerophilic conditions.Water Science and Technology, 2011, 63(5): 956–963

    Article  CAS  Google Scholar 

  37. Saratale R G, Saratale G D, Chang J S, Govindwar S P. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation, 2010, 21(6): 999–1015

    Article  CAS  Google Scholar 

  38. dos Santos A B, Cervantes F J, van Lier J B. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 2007, 98(12): 2369–2385

    Article  Google Scholar 

  39. Saratale R G, Saratale G D, Chang J S, Govindwar S P. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 138–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B., Du, C., Xu, M. et al. Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater. Front. Environ. Sci. Eng. 6, 806–814 (2012). https://doi.org/10.1007/s11783-012-0453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-012-0453-4

Keywords

Navigation