Skip to main content
Log in

Investigation of the effects of humic acid and H2O2 on the photocatalytic degradation of atrazine assisted by microwave

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. USEPA. National Pesticide Survey Factsheet, CLARIT 570990-NPS10. United States Environmental Protection Agency: Washington, DC, 1990

    Google Scholar 

  2. Graziano N, McGuire M J, Roberson A, Adams C, Jiang H, Blute N. 2004 National atrazine occurrence monitoring program using the abraxis elisa method. Environmental Science & Technology, 2006, 40(4): 1163–1171

    Article  CAS  Google Scholar 

  3. Cooper R L, Stoker T E, Tyrey L, Goldman J M, McElroy W K. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicological Sciences, 2000, 53(2): 297–307

    Article  CAS  Google Scholar 

  4. USEPA. Consumer Factsheet on: ATRAZINE. United States Environmental Protection Agency: Washington, DC, 2005

    Google Scholar 

  5. Banerjee K, Cheremisinoff P N, Cheng S L. Sorption of organic contaminants by fly ash in a single solute system. Environmental Science & Technology, 1995, 29(9): 2243–2251

    Article  CAS  Google Scholar 

  6. Mascolo G, Lopez A, Foldenyi R, Passino R, Tiravanti G. Prometryne oxidation by sodium hypochlorite in aqueous solution: kinetics and mechanism. Environmental Science & Technology, 1995, 29(12): 2987–2991

    Article  CAS  Google Scholar 

  7. Yang H, Lin W Y, Rajeshwar K. Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 1999, 123(1–3): 137–143

    Article  CAS  Google Scholar 

  8. Moraes J E F, Quina F H, Nascimento C A O, Silva D N, Chiavone-Filho O. Treatment of saline wastewater contaminated with hydrocarbons by the photo-Fenton process. Environmental Science & Technology, 2004, 38(4): 1183–1187

    Article  CAS  Google Scholar 

  9. Skoumal M, Cabot P L, Centellas F, Arias C, Rodriguez R M, Garrido J A, Brillas E. Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B: Environmental, 2006, 66(3–4): 228–240

    Article  CAS  Google Scholar 

  10. Zalazar C S, Satuf M L, Alfano O M, Cassano A E. Comparison of H2O2/UV and heterogeneous photocatalytic processes for the degradation of dichloroacetic acid in water. Environmental Science & Technology, 2008, 42(16): 6198–6204

    Article  CAS  Google Scholar 

  11. Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV illumination technique: VI. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 2004, 161(2–3): 221–225

    Article  CAS  Google Scholar 

  12. Yang S G, Fu H B, Sun C, Gao Z Q. Rapid photocatalytic destruction of pentachlorophenol in F-Si-comodified TiO2 suspensions under microwave irradiation. Journal of Hazardous Materials, 2009, 161(2–3): 1281–1287

    Article  CAS  Google Scholar 

  13. Ju Y M, Yang S G, Ding Y C, Sun C, Zhang A Q, Wang L. Microwave-Assisted Rapid Photocatalytic Degradation of Malachite Green in TiO2 Suspensions: Mechanism and Pathways. Journal of Physical Chemistry A, 2008, 112(44): 11172–11177

    Article  CAS  Google Scholar 

  14. Zhanqi G, Shaogui Y, Na T, Cheng S. Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. Journal of Hazardous Materials, 2007, 145(3): 424–430

    Article  Google Scholar 

  15. Lin C, Lin K S. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 2007, 66(10): 1872–1877

    Article  CAS  Google Scholar 

  16. Lee H, Choi W. Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environmental Science & Technology, 2002, 36(17): 3872–3878

    Article  CAS  Google Scholar 

  17. Ta N, Hong J, Liu T, Sun C. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. Journal of Hazardous Materials, 2006, 138(1): 187–194

    Article  Google Scholar 

  18. Konstantinou I K, Sakellarides T M, Sakkas V A, Albanis T A. Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environmental Science & Technology, 2001, 35(2): 398–405

    Article  CAS  Google Scholar 

  19. Lackhoff M, Niessner R. Photocatalytic atrazine degradation by synthetic minerals, atmospheric aerosols, and soil particles. Environmental Science & Technology, 2002, 36(24): 5342–5347

    Article  CAS  Google Scholar 

  20. Cao Y, Yi L, Huang L, Hou Y, Lu Y. Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environmental Science & Technology, 2006, 40(10): 3373–3377

    Article  CAS  Google Scholar 

  21. Garbin J R, Milori D M B P, Simões M L, da Silva W T L, Neto L M. Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere, 2007, 66(9): 1692–1698

    Article  CAS  Google Scholar 

  22. Chu W, Choy W K. The mechanisms of rate enhancing and quenching of trichloroethene photodecay in the presence of sensitizer and hydrogen sources. Water Research, 2002, 36(10): 2525–2532

    Article  CAS  Google Scholar 

  23. Ilisz I, Dombi A. The photochemical behavior of hydrogen peroxide in near UV-irradiated aqueous TiO2 suspensions. Journal of Molecular Catalysis A Chemical, 1998, 135(1): 55–61

    Article  CAS  Google Scholar 

  24. Dionysiou D D, Suidan M T, Bekou E, Baudin I, Laine J M. Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water. Applied Catalysis B: Environmental, 2000, 26(3): 153–171

    Article  CAS  Google Scholar 

  25. Chemseddine A. A study of the primary step in the photochemical degradation of acetic-acid and chloroacetic acids on a TiO2 photocatalyst. Journal of Molecular Catalysis, 1990, 60(3): 295–311

    Article  CAS  Google Scholar 

  26. Pelizzetti E. Enhancement of the rate of photocatalytic degradation on TiO2 of 2-chlorophenol, 2,7-dichlorodibenzodioxin and atrazine by inorganic oxidizing species. New Journal of Chemistry, 1991, 15(5): 351–359

    CAS  Google Scholar 

  27. Granados-Oliveros G, Paez-Mozo E A, Ortega F M, Ferronato C, Chovelon J M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Applied Catalysis B: Environmental, 2009, 89(3–4): 448–454

    Article  CAS  Google Scholar 

  28. Héquet V, Gonzalez C, Le Cloirec P. Photochemical processes for atrazine degradation: methodological approach. Water Research, 2001, 35(18): 4253–4260

    Article  Google Scholar 

  29. Pelizzetti E, Maurino V, Minero C, Carlin V, Tosato M L, Pramauro E, Zerbinati O. Photocatalytic degradation of atrazine and other striazine herbicides. Environmental Science & Technology, 1990, 24(10): 1559–1565

    Article  CAS  Google Scholar 

  30. Canelli E. Chemical, bacteriological, and toxicological properties of cyanuric acid and chlorinated isocyanurates as applied to swimming pool disinfection: a review. American Journal of Public Health, 1974, 64(2): 155–162

    Article  CAS  Google Scholar 

  31. Hiskia A, Ecke M, Troupis A, Kokorakis A, Hennig H, Papaconstantinou E. Sonolytic, photolytic, and photocatalytic decomposition of atrazine in the presence of polyoxometalates. Environmental Science & Technology, 2001, 35(11): 2358–2364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, C., Yang, S., Sun, C. et al. Investigation of the effects of humic acid and H2O2 on the photocatalytic degradation of atrazine assisted by microwave. Front. Environ. Sci. Eng. China 4, 321–328 (2010). https://doi.org/10.1007/s11783-010-0238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0238-6

Keywords

Navigation