Skip to main content
Log in

Algal-bloom control by allelopathy of aquatic macrophytes — A review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Algal-bloom control is an important issue for water environment protection as it induces several negative impacts on the lives of aquatic organisms, aquaculture, landscaping, and human health. The development of an environment-friendly, cost-effective, and convenient alternative for controlling algal bloom has gained much concern. Using the allelopathy of aquatic macrophytes as a novel and safe method for algal-bloom control is a promising alternative. This paper reviews the development and potential application about allelopathy of aquatic plants on algae, including the allelopathic research history, the potential research problems, the research methodology, and the reported aquatic macrophytes and their inhibitory allelochemicals. Potential modes of inhibition action of allelochemicals on algae, possible ways for application, and future development directions of research on algal-bloom control by aquatic macrophytes were also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam A K Y, Prepas L E E, Spink D, Hrudey S E. Chemical control of hepatotoxic phytoplankton blooms: Implications for human health. Water Res., 1995, 29(8): 1845–1854

    Article  CAS  Google Scholar 

  2. Verschuren D, Johnson T C, Kling H J, Edgington D N, Leavitt P R, Brown E T, Talbot M R, Hecky R E. History and timing of human impact on Lake Victoria, East Africa. Proc. R Soc. B, 2002, 269(1488): 289–294

    Article  Google Scholar 

  3. Liu X, Dedu G S. Phytoplankton and the controlling of eutrophication of water body. J. Capital. Normal Univ. (Nat. Sci. Ed.), 2002, 23(4): 56–59 (in Chinese)

    CAS  Google Scholar 

  4. Peng H Q, Tang Z R, Gao R Y, Meng C Z. Algal removal in water-supply treatments. Chin. Wat. Wastewat. 2002, 18(2): 29–31 (in Chinese)

    CAS  Google Scholar 

  5. Wang G X, Pu P M. Influence of Some artifical controls on eutrophic algal population dynamics. Environ. Sci., 1999, 20: 71–74 (in Chinese)

    Google Scholar 

  6. Wang Z S, Liu W J. Micro-polluted Drinking Water Source Treatment. Beijing: China Architecture & Building Press, 1999 (in Chinese)

    Google Scholar 

  7. Zhou Y L, Yu M. The occurrence, hazards and prevention of water bloom. Bulletin. Biol., 2004, 39(6): 11–14 (in Chinese)

    Google Scholar 

  8. He L P. Control blue algal bloom by using algaecide. Yunnan Environ. Sci., 2001, 20(2): 43–44 (in Chinese)

    CAS  Google Scholar 

  9. Li J H, Gao W, Zhang H, Lu J J, Liu G Z. Emergency control of blue algal bloom by algaecide: experimental study in Xuanwu Lake. Environ. Pollut. Control, 2007, 29(1): 60–62 (in Chinese)

    Google Scholar 

  10. Dolan J R, Simek K. Diel periodicity in synechococcus populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole contents. Limnol. Oceanogr., 1999, 44(6): 1565–1570

    Google Scholar 

  11. Chen K. Several physiological and ecological characters of freshwater cyanophage. Dissertation for the Master’s Degree. Wuhan: Huazhong Normal University, 2002 (in Chinese)

  12. Liu X Y, Shi M, Liao Y H, Zhou L, An C C. Protozoa capable of grazing on cyanobacteria and its biological control of the algae blooming. Acta Hydrobiol. Sin., 2005, 29(14): 456–461 (in Chinese)

    CAS  Google Scholar 

  13. Ferrier M D, Butler B R, Terlizzi E. The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresource Technol., 2005, 96: 1788–1795

    Article  CAS  Google Scholar 

  14. Ball A S, Williams M, Vincent D, Robinson J. Algal growth control by a barley straw extract. Bioresource Technol., 2001, 77: 177–181

    Article  CAS  Google Scholar 

  15. Cooper W J, ZIKA R G. Photochemical formation of hydrogen peroxide in surface and ground water exposed to sunlight. Science, 1983, 220: 711–712

    Article  CAS  Google Scholar 

  16. Everall N C, Lees D R. The identification and significance of chemichals released from decomposing barley straw during reservoir algal control. Water Res., 1997, 31(3): 614–620

    Article  CAS  Google Scholar 

  17. Pillinger J M, Cooper J A, Ridge I, Barrett P R F. Barley straw as an inhibitor of algal growth III: The role of fungal decomposition. J. Appl. Phycol., 1992, 4: 353–355

    Article  Google Scholar 

  18. Zhang X, Hu H Y, Men Y J. Inhibitory effect of extract from barley straw on the growth of Microcystis aeruginosa. Acta Scien Circum, 27(12): 1984–1987 (in Chinese)

  19. Zhao Y K. Investigation of mechanism of inhibitory effect of rotting barley straw on algal growth. J. Hebei Acad. Sci., 1997, (3): 19–24 (in Chinese)

  20. Ridge I, Walters J, Street M. Algal growth control by terrestrial leaf litter: A realistic tool? Hydrobiologia, 1999, 395/396: 173–180

    Article  CAS  Google Scholar 

  21. Wan H, Zhang Y. Growth inhibition of cyanobacteria by decomposed rice straw. Acta Sci. Nat. Univ. Pekin., 2000, 36(4): 485–488 (in Chinese)

    Google Scholar 

  22. Gopal B, Goel U. Competition and allelopathy in aquatic plant communities. Bot. Rev., 1993, 59: 155–210

    Article  Google Scholar 

  23. Inderjit S, Dakshini K M M. Algal allelopathy, Bot. Rev., 1994, 60: 182–196

    Article  Google Scholar 

  24. Gross E M. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci., 2003, 22: 313–339

    Article  Google Scholar 

  25. van Donk E, van de Bund W J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: Allelopathy versus other mechanisms. Aquat. Bot., 2002, 72: 261–274

    Article  Google Scholar 

  26. Molisch H. Der Einfluss einer Pflanze auf die andere Allelopathie. Jena: Gustav Fischer Verlag, 1937

    Google Scholar 

  27. Rice E L. Allelopathy (2nd edition). London: Academic Press, 1984

    Google Scholar 

  28. Hasler A D, Jones E. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology, 1949, 30: 359–365

    Article  Google Scholar 

  29. Proctor V W. Some controlling factors in the distribution of Haematococcus pluvialis. Ecology, 1957, 38: 457–462

    Article  Google Scholar 

  30. van Aller R T, Pessoney G F, Rogers V A, Watkins E J, Leggett H G. Oxygenated fatty acids: A class of allelochemicals from aquatic plants. ACS Symp. Ser., 1985, 268: 387–400

    Article  Google Scholar 

  31. Hogetsu K M, Okanishi Y, Sugawara H. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants. Jap. J. Limnol., 1960, 21: 124–130

    Google Scholar 

  32. Kogan S I, Chinnova G A. Relations between Ceratophyllum demersum L. and some blue-green algae. Hydrobiol. J., 1972, 8: 14–19

    Google Scholar 

  33. van Vierssen W, Prins Th C. On the relationship between the growth of algae and aquatic macrophytes in brackish water. Aquat Bot, 1985, 21: 165–179

    Article  Google Scholar 

  34. Elakovich S D, Wooten J W. An examination of the phytotoxicity of the water shield, Brasenia schreberi. J. Chem. Ecol., 1987, 13(9): 1935–1940

    Article  Google Scholar 

  35. Weaks T. Allelopathic interference as a factor influencing the periphyton community of a freshwater marsh. Arch. Hydrobiol., 1988, 111: 369–382

    Google Scholar 

  36. Sun W H, Yu Z W, Yu S W. Inhibitory effect of Eichhornia crassipes (Mart.) Solms on algae. Acta Phytophysiol. Sin., 1988, 14(3): 294–300 (in Chinese)

    Google Scholar 

  37. Yu Z W, Sun W H, Guo K Q, Yu S W. Allelopathic effects of several aquatic plants on algae. Acta Hydrobiol. Sin., 1992, 16(1): 1–7 (in Chinese)

    Google Scholar 

  38. Jasser I. The influence of macrophytes on a phytoplankton community in experimental condition. Hydrobiologia, 1995, 306: 21–32

    Article  CAS  Google Scholar 

  39. Brammer E S. Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshwat. Biol., 1979, 9: 233–249

    Article  Google Scholar 

  40. Forsberg C, Kleiven S, Willen T. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot., 1990, 38: 289–294

    Article  Google Scholar 

  41. Inderjit S, Dakshimi K M M. Allelopathic effect of cyanobacterial inoculum on soil characteristics and cereal growth. Can. J. Bot., 1997, 75: 1267–1272

    Article  Google Scholar 

  42. Whittaker R. The biochemical ecology of higher plants. In: Soudheimer E, Simeone J B, eds. Chemical Ecology. New York: Academic Press Inc., 1970

    Google Scholar 

  43. Sutton D L, Portier K M. Influence of allelochemicals and aqueous plant extracts on growth of duckweed. J. Aquat. Plant Manage, 1989, 27: 90–95

    Google Scholar 

  44. Sutton D L, Portier K M. Influence of spikeruch plants on growth and nutrient content of hydrilla. J. Aquat. Plant Manage, 1991, 29: 6–11

    Google Scholar 

  45. Stevens K L, Merril G B. Growth inhibitors from Spikerush. J. Agric. Food Chem., 1980, 28: 644–646

    Article  CAS  Google Scholar 

  46. Xian Q M, Chen H D, Liu H L, Zou H X, Yin D Q. Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation. Environ. Sci. Pollut. Res., 2006, 13(4): 233–237

    Article  CAS  Google Scholar 

  47. Yang S Y, Sun W H. Isolation and identification of antialgal compounds from root system of water hyacinth. Acta Photophysiol. Sin., 1992, 18(4): 399–402 (in Chinese)

    CAS  Google Scholar 

  48. Sutfeld R, Petereit F, Nahrstedt A. Resorcinol in exudates of Nuphar lutea. J. Chem. Ecol., 1996, 22: 2221–2231

    Article  Google Scholar 

  49. Sutfeld R. Polymerization of resorcinol by a cryptophycean exoenzyme. Phytochemistry, 1998, 49: 451–459

    Article  CAS  Google Scholar 

  50. Nakai S, Inoue Y, Hosomi M, Murakami A. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res., 2000, 34(11): 3026–3032

    Article  CAS  Google Scholar 

  51. Nakai S, Yamada S, Hosomi M. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia, 2005, 543: 71–78

    Article  CAS  Google Scholar 

  52. Einhellig F A. Mechanisms and modes of action of allelochemicals. In: Putnam A R, Tang C S, eds. The Science of Allelopathy. New York: John Wiley & Sons 1986, 171–188

    Google Scholar 

  53. Leu E, Krieger-Liszkay A, Goussias C, Gross E M. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol., 2002, 130(4): 2011–2018

    Article  CAS  Google Scholar 

  54. Li F M, Hu H Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol., 2005, 71(11): 6545–6553

    Article  CAS  Google Scholar 

  55. Ervin G N, Wetzel R G. Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). Am. J. Bot., 2000, 87: 853–860

    Article  CAS  Google Scholar 

  56. McNaughton S J. Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology, 1968, 49: 367–369

    Article  Google Scholar 

  57. Hong Y, Hu H Y. Effects of the aquatic extracts of Arundo donax L. on the growth of freshwater algae. Allelopathy J., 2007, 20(2): 315–325

    Google Scholar 

  58. D’Abrosca B, Greca M D, Fiorentino A, Isidori M, Monaco P, Pacifico S. Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. J Chem Ecol, 2006, 32(1): 81–96

    Article  CAS  Google Scholar 

  59. Ma J F, Zheng S J, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol., 1997, 38(9): 1019–1025

    CAS  Google Scholar 

  60. Tang C S, Yang C C. Collection and identification of allelopathic compounds from the undisturbed root system of biganlta limpograss (Hemarthria altissima). Plant Physiol., 1982, 69(1): 155–160

    CAS  Google Scholar 

  61. Zeng R S, Luo S M. Allelopathic effects of root exudates of Cymbopogon citratus, Ageratum conyzoides and Bidens pilosa. J. South China Agri. Univ., 1996, 17(2): 119–120 (in Chinese)

    Google Scholar 

  62. He C Q, Ye J X. Inhibitory effects of Acorus tatarinowii on algae growth. Acta Ecol. Sin., 1999, 19(5): 754–758 (in Chinese)

    Google Scholar 

  63. Körner S, Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol., 2002, 38: 862–871

    Article  Google Scholar 

  64. Mulderij G, Van Donk E, Roelofs J G M. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 2003, 491: 261–271

    Article  Google Scholar 

  65. Men Y J, Hu H Y, Li F M. Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis Trin) on the growth of several common species of green algae. J. Appl. Phycol., 2007, 19(5): 521–527

    Article  CAS  Google Scholar 

  66. Hootsmans M J M, Blindow I. Allelopathic limitation of algal growth by macrophytes. In: van Vierssen W, Hootsmans M J M, Vermaat J E, eds. Lake Veluwe, A Macrophyte-dominated System Under Eutrophication Stress. Dordrecht: Kluwer Academic Publisher, 1994, 175–192

    Google Scholar 

  67. Li FM. Inhibition effect of allelochemicals from macrophytes on harmful algal growth. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2005 (in Chinese)

    Google Scholar 

  68. Blum U. Allelopathic interactions involving phenolic acids. J. Nematol., 1996, 28: 259–267

    CAS  Google Scholar 

  69. Ishida K, Murakami M. Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J. Org. Chem., 2000, 65: 5898–5900

    Article  CAS  Google Scholar 

  70. Mjelde M, Faafeng B A. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwat. Biol., 1997, 37: 355–365

    Article  Google Scholar 

  71. Fitzgerald G P. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. J. Phycol., 1969, 5: 351–359

    Article  Google Scholar 

  72. Zhuang Y Y, Zhao F, Dai S G, Jin Z H. Algal growth inhibition by phytotoxins. Adv. Environ. Sci., 1995, 3(6): 44–49 (in Chinese)

    CAS  Google Scholar 

  73. Wetzel R G. Limnology—Lake and River Ecosystems. 3rd ed. San Diego: Academic Press, 2001

    Google Scholar 

  74. Nakai S, Inoue Y, Hosomi M. Growth inhibition of blue-green algae by allelopathic effects of macrophyte. Water Sci. Tech., 1999, 39(8): 47–53

    Article  Google Scholar 

  75. Tang P, Wu G R, Lu C M, Zou C F, Wei J C. Effects of the excretion from root system of Eichhornia crassipes on the cell structure and metabolism of Scenedesmus arcuatus. Acta Scien. Circum., 2000, 20(3): 355–359 (in Chinese)

    CAS  Google Scholar 

  76. Wium-Andersen S. Allelopathy among aquatic plants. Arch. Hydrobiol., 1987, 27: 167–172

    Google Scholar 

  77. Gross E M, Erhard D, Ivanyi E. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp intermedia (Wolfgang) Casper. Hydrobiologia, 2003, 506(1–3): 583–589

    Article  Google Scholar 

  78. Berger J, Schagerl M. Allelopathic activity of Characeae. Biologia, 2004, 59: 9–15

    Google Scholar 

  79. Crawford S A. Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia, 1979, 62: 17–31

    CAS  Google Scholar 

  80. Berger J, Schagerl M. Allelopathic acitivity of Chara aspera. Hydrobiologia, 2003, 501: 109–115

    Article  CAS  Google Scholar 

  81. Horecka M. The significant role of Chara hispida grown in water regions of a gravel pit lake at Senec. Arch. Protistenkd., 1991, 139: 275–278

    Google Scholar 

  82. Brammer E S, Wetzel R G. Uptake and release of K+, Na+ and Ca2+ by the water soldier, Stratiotes aloides L. Aquat. Bot., 1984, 19: 119–130

    Article  CAS  Google Scholar 

  83. Mulderij G, Mau B, van Donk E, Gross E M. Allelopathic activity of Stratiotes aloides on phytoplankton-towards identification of allelopathic substances. Hydrobiologia, 2007, 584: 89–100

    Article  CAS  Google Scholar 

  84. Anthoni U, Christophersen C, Madsen J, Wium-Andersen S, Jacobsen N. Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry, 1980, 19: 1228–1229

    Article  CAS  Google Scholar 

  85. Wium-Andersen S, Anthoni U, Christophersen C, Houen G. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 1982, 39: 187–190

    Article  Google Scholar 

  86. Greca M D, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Antialgal ent-labdane diterpenes from Ruppia maritime. Phytochemistry, 2000, 55: 909–913

    Article  Google Scholar 

  87. Wang W H, Ji M, Wang M M, Zhang N, Tang Y P, Zhang Z Y. Allelopathy of Ruppia Maritima on Chlorella vulgaris in reclaimed wastewater. J. Lake Sci., 2007, 19(3): 321–325 (in Chinese)

    CAS  Google Scholar 

  88. Wang L X, Zhang L, Zhang Y X, Jin C Y, Lu C M, Wu G R. The inhibitory effect of Hydrilla verticillata culture water on Microcystic aeruginosa and its mechanism. J. Plant Physiol. Mol. Biol., 2006, 32(6): 672–678 (in Chinese)

    Google Scholar 

  89. Greca M D, Monaco P, Previtera L, Aliotta G, Pinto G, Pollio A. Allelochemical activity of phenylpropanes from Acorus gramineus. Phytochemistry, 1989, 28(9): 2319–2321

    Article  Google Scholar 

  90. Greca M D, Ferrara M, Fiorentino A, Monaco P, Previtera L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry, 1998, 49(5): 1299–1304

    Article  Google Scholar 

  91. Greca M D, Fiorentino A, Monaco P, Pinto G, Pollio A, Previtera L. Action of antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. J. Chem. Ecol., 1996, 22(3): 587–603

    Article  Google Scholar 

  92. Greca M D, Fiorentino A, Monaco P, Pinto G, Previtera L, Zarrelli A. Synthesis and antialgal activity of dihydrophenanthrenes and phenanthrenes II: Mimics of naturally occurring compounds in Juncus effusus. J. Chem. Ecol., 2001, 27(2): 257–271

    Article  Google Scholar 

  93. Greca M D, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A. Bioactivity of phenanthrenes from Juncus acutus on Selenastrum capricornutum. J. Chem. Ecol., 2004, 30(4): 867–879

    Article  Google Scholar 

  94. Greca M D, Fiorentino A, Monaco P, Previtera L, Temussi F, Zarrelli A. New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity. Tetrahedron, 2003, 59(13): 2317–2324

    Article  CAS  Google Scholar 

  95. Dai S G, Zhao F, Jin Z H, Zhuang Y Y, Yuan Y C. Allelopathic effect of plant’s extracts on algae and the isolation and identification of phytotoxins. Environ. Chem., 1997, 16(3): 268–271 (in Chinese)

    CAS  Google Scholar 

  96. Aliotta G, Greca M D, Monaco P, Pinto G, Pollio A, Previtera, L. In vitro algal growth inhibition by phytotoxins of Typha latifolia L.. J. Chem. Ecol., 1990, 16(9): 2637–2646

    Article  CAS  Google Scholar 

  97. Greca M D, Mangoni L, Molinaro A, Monaco P, Previtera, L. (20S)-4α-Methyl-24-methylenecholest-7-en-3β-ol, an allelopathic sterol from Typha latifolia. Phytochemistry, 1990, 29: 1797–1798

    Article  Google Scholar 

  98. Gallardo M T, Martin B B, Martin D F. Inhibition of water ferm (Salviania minima) by cattail (Typha domingensis) extracts and by 2-chlorophenol and salicylaldehyde. J. Chem. Ecol., 1998, 24: 1483–1490

    Article  CAS  Google Scholar 

  99. Zhou S, Nakai S, Hosomi M, Sezaki Y, Tominaga M. Allelopathic growth inhibition of cyanobacteria by reed. Allelopathy J., 2006, 18(2): 277–285

    Google Scholar 

  100. Aliotta G, Monaco P, Pinto G, Pollio A, Previtera L. Potential allelochemicals from Pistia stratiotes L. J. Chem. Ecol., 1991, 17(11): 2223–2234

    Article  CAS  Google Scholar 

  101. Sun W H, Yu S W, Yang S Y, Zhao B W, Yu Z W, Wu H L, Huang S Y, Tang C S. Allelochemicals from root exudates of water hyacinth (Eichhornis crassipes). Acta Photophysiol. Sin., 1993, 19(1): 92–96 (in Chinese)

    CAS  Google Scholar 

  102. Greca M D, Lanzetta R, Mangoni L, Monaco P, Previtera L. A bioactive benzoindenone from Eichhornia crassipes. Solms. Bioorg. Med. Chem. Lett., 1991, 1: 599–600

    Article  Google Scholar 

  103. Greca M D, Lanzetta R, Molinaro A, Monaco P, Previtera L. Phenalene metabolites from Eichhornia crassipes. Bioorg. Med. Chem. Lett., 1992, 2: 311–314

    Article  Google Scholar 

  104. Wu Z B, Deng P, Wu X H, Luo S, Gao Y N. Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus. Hydrobiologia, 2007, 592: 465–474

    Article  CAS  Google Scholar 

  105. Cangiano T, Greca M D, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochemistry, 2001, 56(5): 469–473

    Article  CAS  Google Scholar 

  106. Greca M D, Fiorentino A, Isidori M, Monaco P, Temussi F, Zarrelli A. Antialgal furano-diterpenes from Potamogeton natans L. Phytochemistry, 2001a, 58(2): 299–304

    Article  Google Scholar 

  107. Waridel P, Wolfender J L, Lachavanne J B, Hostettmann K. ent-Labdane diterpenes from the aquatic plant Potamogeton pectinatus. Phytochemistry, 2003, 64(7): 1309–1317

    Article  CAS  Google Scholar 

  108. Gross E M, Meyer H, Schilling G. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 1996, 41(1): 133–138

    Article  CAS  Google Scholar 

  109. Planas D, Sarhan F, Dube L, Godmaire H, Cadieux C. Ecological significance of phenolic compounds of Myriophyllum spicatum. Verh. Internat. Verein. Theor. Angew. Limnol., 1981, 21: 1492–1496

    CAS  Google Scholar 

  110. Saito K, Matsumoto M, Sekine T, Murakashi J. Inhibitory substances form Myriophyllum brasiliense on growth of blue-green algae. J. Nat. Prod., 1989, 52(6): 1221–1226

    Article  CAS  Google Scholar 

  111. Aliotta G, Molinaro A, Monaco P, Pinto G, Previtera L. Three biologically active phenylpropanoid glucosides from Myriophyllum verticillatum. Phytochemistry, 1992, 31(1): 109–111

    Article  CAS  Google Scholar 

  112. Pollio A, Pinto G, Ligrone R, Aliotta G. Effects of the potential allelochemical α-asarone on growth, physiology and ultrastructure of two unicellular green algae. J. Appl. Phycol., 1993, 5: 395–403

    Article  CAS  Google Scholar 

  113. Wium-Andersen S, Anthoni U, Houen G. Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry, 1983, 22: 2613

    Article  CAS  Google Scholar 

  114. Men Y J, Hu H Y, Li F M. Effects of an allelopathic fraction from Phragmitis communis Trin on the growth characteristics of Scenedesmus obliquus. Ecol. Environ., 2006, 15(5): 925–929 (in Chinese)

    Google Scholar 

  115. Wang L X, Wu G R, Wang J A, Zhang H, Lu C M, Xu Q S. The inhibition of Hydrilla verticillata on Microcystis aeruginosa. J. Lake Sci., 2004, 16(4): 337–342 (in Chinese)

    Google Scholar 

  116. Jiang G B, Ceng R S. Allelopathic potentials of volatiles from Artemisia lavandulaefolia DC. Prodr. Ecol. Sci., 2006, (2): 106–108 (in Chinese)

  117. Hao Z P, Wang Q, Christie P, Li X L. Allelopathic potential of watermelon tissues and root exudates. Sci. Hort., 2007, 112(3): 1673–1679

    Google Scholar 

  118. Yu J Q. Autotoxic potential of vegetable crops. In: Narwal S S, ed. Allelopathy Update-basic and Applied Aspects. New Hampshire: Science Publishers Inc., 1999, 159–162

    Google Scholar 

  119. Viator R P, Johnson R M, Grimm C C, Richard E PJr. Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron. J., 2006, 98: 1526–1531

    Article  Google Scholar 

  120. Chen D Q, Chen R M, Pan R C. The new promotive allelopathy substance-Lepidimoide. Plant Physiol. Commun., 1998, 34(6): 455–457

    CAS  Google Scholar 

  121. Ortega R C, Anaya A L, Ramos L. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J. Chem. Ecol., 1988, 14(1): 71–86

    Article  Google Scholar 

  122. Romagni J G, Allen S N, Dayan F E. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol., 2000, 26(1): 303–314

    Article  CAS  Google Scholar 

  123. Baziramakenga R, Simard R R, Leroux G D. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. J. Chem. Ecol., 1994, 20(11): 2821–2833

    Article  CAS  Google Scholar 

  124. Netzly D H, Riopel J L, Ejeta G, Butler L G. Germination stimulants of withweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci., 1988, 36: 441–446

    CAS  Google Scholar 

  125. Ma R X, Liu X F, Yuan G L, Sun S E. Study on allelochemicals in the process of decomposition of wheat straw by microorganisms and their bioactivity. Acta Ecol. Sin., 1996, 16(6): 632–639 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Hong, Y. Algal-bloom control by allelopathy of aquatic macrophytes — A review. Front. Environ. Sci. Eng. China 2, 421–438 (2008). https://doi.org/10.1007/s11783-008-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-008-0070-4

Keywords

Navigation