Skip to main content
Log in

Mechanical behavior of deep sandstone under high stress-seepage coupling

高应力-渗流耦合下深部砂岩的力学行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The mechanical behavior evolution characteristics of sandstone are important to the application and practice of rock engineering. Therefore, a new method and concept of deep rock mechanics testing are proposed to reveal the mechanical behavior evolution mechanism of deep roadway surrounding rock after excavation with a depth over 1000 m. High stress-seepage coupling experiments of deep sandstone under various confining pressures are conducted using GCTS. Stress — strain and permeability curves are obtained. The three-stage mechanical behavior of deep sandstone is better characterized. A platform and secondary compaction phenomena are observed. With the confining pressure increasing, the platform length gradually decreases, even disappears. In the stade I, the rigid effect of deep sandstone is remarkable. In the stage II, radial deformation of deep sandstone dominates. The transient strain of confining pressure compliance is defined, which shows three-stage evolution characteristics. In the stage III, the radial deformation is greater than the axial deformation in the pre-peak stage, but the opposite trend is observed in the post-peak stage. It is found that the dynamic permeability can be more accurately characterized by the radial strain. The relations between the permeability and stress-strain curves in various stages are revealed.

摘要

砂岩的力学行为演化特征对岩石工程的应用与实践很重要. 为此, 本文提出了一种新的深部岩石力学测试方法与概念, 以便揭示超千米深井巷道在开挖后围岩力学行为的演化机制. 采用GCTS 多场耦合伺服系统, 对深部砂岩进行了不同围压条件下的高应力-渗流耦合试验, 获得的应力-应变及渗透率演化曲线, 较好地表征了深部砂岩“三阶段”加载下的力学行为特征. 本文发现了“平台”及二次压密现象, 并且随着围压的增加, 平台的长度逐渐变短, 甚至消失. 在I 阶段, 深部砂岩具有显著的刚化效应. 在II 阶段, 深部砂岩的径向变形占据主导地位. 此外, 定义了瞬态应变围压柔量, 该参量曲线呈现出显著的三阶段演化特征. 在III 阶段, 深部砂岩的峰前径向变形超前于轴向变形, 峰后则与之相反. 另外, 发现了径向应变更能灵敏表征渗透率动态变化, 并揭示了渗透率曲与应力-应变曲线各阶段之间的对应关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STEINER W. Tunnelling in squeezing rocks: Case histories [J]. Rock Mechanics and Rock Engineering, 1996, 29(4): 211–246. DOI:https://doi.org/10.1007/BF01042534.

    Article  Google Scholar 

  2. DALGıÇ S. Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey [J]. Engineering Geology, 2002, 67(1, 2): 73–96. DOI:https://doi.org/10.1016/S0013-7952(02)00146-1.

    Article  Google Scholar 

  3. XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (11): 2161–2178. (in Chinese)

    Google Scholar 

  4. YANG Sheng-qi, CHEN Miao, JING Hong-wen, CHEN Kun-fu, MENG Bo. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’an coal mine, China [J]. Engineering Geology, 2017, 217: 89–101. DOI:https://doi.org/10.1016/j.enggeo.2016.12.012.

    Article  Google Scholar 

  5. LI T, CAI M F, CAI M. A review of mining-induced seismicity in China [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1149–1171. DOI:https://doi.org/10.1016/j.ijrmms.2007.06.002.

    Article  Google Scholar 

  6. ZHU Shu-yun, JIANG Zhen-quan, ZHOU Kai-jun, PENG Guang-qing, YANG Chao-wei. The characteristics of deformation and failure of coal seam floor due to mining in Xinmi coal field in China [J]. Bulletin of Engineering Geology and the Environment, 2014, 73(4): 1151–1163. DOI:https://doi.org/10.1007/s10064-014-0612-x.

    Article  Google Scholar 

  7. ZHANG Qin-li, HU Guan-yu, WANG Xin-min. Hydraulic calculation of gravity transportation pipeline system for backfill slurry [J]. Journal of Central South University of Technology, 2008, 15(5): 645–649. DOI:https://doi.org/10.1007/s11771-008-0120-x.

    Article  Google Scholar 

  8. SHEN Bao-tang. Coal mine roadway stability in soft rock: A case study [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2225–2238. DOI:https://doi.org/10.1007/s00603-013-0528-y.

    Article  Google Scholar 

  9. ZHANG Kai, ZHANG Gui-min, HOU Rong-bin, WU Yu, ZHOU Hong-qi. Stress evolution in roadway rock bolts during mining in a fully mechanized longwall face, and an evaluation of rock bolt support design [J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 333–344. DOI:https://doi.org/10.1007/s00603-014-0546-4.

    Article  Google Scholar 

  10. HE Man-chao, XIE He-ping, PENG Su-ping, JIANG Yao-dong. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. (in Chinese)

    Google Scholar 

  11. GRAHAM J, SAADAT F, GRAY M N. High-pressure triaxial testing on the Canadian reference buffer material [J]. Engineering Geology, 1990, 28(3, 4): 391–403. DOI:https://doi.org/10.1016/0013-7952(90)90023-T.

    Article  Google Scholar 

  12. LI Guo-qing, YAN De-tian, ZHUANG Xin-guo, ZHANG Zheng, FU Hai-jiao. Implications of the pore pressure and in situ stress for the coalbed methane exploration in the southern Junggar Basin, China [J]. Engineering Geology, 2019,262: 105305. DOI:https://doi.org/10.1016/j.enggeo.2019.105305.

    Article  Google Scholar 

  13. ZHENG Lian-ge, RUTQVIST J, BIRKHOLZER J T, LIU Hui-hai. On the impact of temperatures up to 200 °C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling [J]. Engineering Geology, 2015, 197: 278–295. DOI:https://doi.org/10.1016/j.enggeo.2015.08.026.

    Article  Google Scholar 

  14. DAS B, CHATTERJEE R. Wellbore stability analysis and prediction of minimum mud weight for few wells in Krishna-Godavari Basin, India [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 30–37. DOI:https://doi.org/10.1016/j.ijrmms.2016.12.018.

    Article  Google Scholar 

  15. CHEN Shi-da, TANG Da-zhen, TAO Shu, XU Hao, ZHAO Jun-long, FU Hai-jiao, REN Peng-fei. In-situ stress, stress-dependent permeability, pore pressure and gas-bearing system in multiple coal seams in the Panguan area, western Guizhou, China [J]. Journal of Natural Gas Science and Engineering, 2018, 49: 110–122. DOI:https://doi.org/10.1016/j.jngse.2017.10.009.

    Article  Google Scholar 

  16. ZHAO Jun, FENG Xia-ting, ZHANG Xi-wei, ZHANG Yan, ZHOU Yang-yi, YANG Cheng-xiang. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression [J]. Engineering Geology, 2018, 232: 160–170. DOI:https://doi.org/10.1016/j.enggeo.2017.11.008.

    Article  Google Scholar 

  17. TANG Yang, OKUBO S, XU Jiang, PENG Shou-jian. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation [J]. Engineering Geology, 2019, 249: 172–185. DOI:https://doi.org/10.1016/j.enggeo.2018.12.026.

    Article  Google Scholar 

  18. ASADIZADEH M, HOSSAINI M F, MOOSAVI M, MASOUMI H, RANJITH P G. Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression [J]. Engineering Geology, 2019, 260: 105224. DOI:https://doi.org/10.1016/j.enggeo.2019.105224.

    Article  Google Scholar 

  19. MA Lin-jian, LIU Xin-yu, WANG Ming-yang, XU Hong-fa, HUA Rui-ping, FAN Peng-xian, JIANG Shen-rong, WANG Guo-an, YI Qi-kang. Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 34–41. DOI:https://doi.org/10.1016/j.ijrmms.2013.04.003.

    Article  Google Scholar 

  20. PELLET F L, KESHAVARZ M, AMINI-HOSSEINI K. Mechanical damage of a crystalline rock having experienced ultra high deviatoric stress up to 1.7 GPa [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1364–1368. DOI:https://doi.org/10.1016/j.ijrmms.2011.09.006.

    Article  Google Scholar 

  21. ZHANG Jun-wen, SONG Zhi-xiang, WANG Shan-yong. Experimental investigation on permeability and energy evolution characteristics of deep sandstone along a three-stage loading path [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1571–1584. DOI:https://doi.org/10.1007/s10064-020-01978-6.

    Article  Google Scholar 

  22. HALLBAUER D K, WAGNER H, COOK N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests [J]. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts, 1973, 10(6): 713–726. DOI:https://doi.org/10.1016/0148-9062(73)90015-6.

    Article  Google Scholar 

  23. MEDHURST T P, BROWN E T. A study of the mechanical behaviour of coal for pillar design [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1087–1105. DOI:https://doi.org/10.1016/S0148-9062(98)00168-5.

    Article  Google Scholar 

  24. WANG Shu-gang, ELSWORTH D, LIU Ji-shan. Mechanical behavior of methane infiltrated coal: The roles of gas desorption, stress level and loading rate [J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 945–958. DOI:https://doi.org/10.1007/s00603-012-0324-0.

    Article  Google Scholar 

  25. GHOLAMI R, RASOULI V. Mechanical and elastic properties of transversely isotropic slate [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1763–1773. DOI:https://doi.org/10.1007/s00603-013-0488-2.

    Article  Google Scholar 

  26. MASRI M, SIBAI M, SHAO J F, MAINGUY M. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 185–191. DOI:https://doi.org/10.1016/j.ijrmms.2014.05.007.

    Article  Google Scholar 

  27. GAO Quan, TAO Jun-liang, HU Jian-ying, YU Xiong. Laboratory study on the mechanical behaviors of an anisotropic shale rock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2): 213–219. DOI:https://doi.org/10.1016/j.jrmge.2015.03.003.

    Article  Google Scholar 

  28. GHOBADI M H, BABAZADEH R. Experimental studies on the effects of cyclic freezing-thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1001–1016. DOI:https://doi.org/10.1007/s00603-014-0609-6.

    Article  Google Scholar 

  29. JIN Chang-yu, YANG Cheng-xiang, FANG Dan, XU Shuai. Study on the failure mechanism of basalts with columnar joints in the unloading process on the basis of an experimental cavity [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1275–1288. DOI: https://doi.org/10.1007/s00603-014-0625-6.

    Article  Google Scholar 

  30. ZHOU Xue-jun, BURBEY T J, WESTMAN E. The effect of caprock permeability on shear stress path at the aquifer-caprock interface during fluid injection [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 1–10. DOI:https://doi.org/10.1016/j.ijrmms.2015.03.023.

    Article  Google Scholar 

  31. MENG Qing-bin, ZHANG Ming-wei, HAN Li-jun, PU Hai, LI Hao. Effects of size and strain rate on the mechanical behaviors of rock specimens under uniaxial compression [J]. Arabian Journal of Geosciences, 2016, 9(8): 1–14. DOI:https://doi.org/10.1007/s12517-016-2559-7.

    Article  Google Scholar 

  32. ZOU Chun-jiang, WONG L N Y, LOO J J, GAN B S. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings [J]. Engineering Geology, 2016, 201: 71–84. DOI:https://doi.org/10.1016/j.enggeo.2015.12.014.

    Article  Google Scholar 

  33. MA Yi-fei, HUANG Hai-ying. DEM analysis of failure mechanisms in the intact Brazilian test [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 109–119. DOI:https://doi.org/10.1016/j.ijrmms.2017.11.010.

    Article  Google Scholar 

  34. WANG Z L, SHI H, WANG J G. Mechanical behavior and damage constitutive model of granite under coupling of temperature and dynamic loading [J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3045–3059. DOI:https://doi.org/10.1007/s00603-018-1523-0.

    Article  MathSciNet  Google Scholar 

  35. JIANG T, SHAO J F, XU W Y, ZHOU C B. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 703–713. DOI:https://doi.org/10.1016/j.ijrmms.2010.05.003.

    Article  Google Scholar 

  36. WANG H L, XU W Y, JIA C J, CAI M, MENG Q X. Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(6): 04016014. DOI:https://doi.org/10.1061/(asce)gt.1943-5606.0001462.

    Article  Google Scholar 

  37. HU D W, ZHOU H, ZHANG F, SHAO J F. Evolution of poroelastic properties and permeability in damaged sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 962–973. DOI:https://doi.org/10.1016/j.ijrmms.2010.06.007.

    Article  Google Scholar 

  38. XU Peng, YANG Sheng-qi. Permeability evolution of sandstone under short-term and long-term triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 152–164. DOI:https://doi.org/10.1016/j.ijrmms.2016.03.016.

    Article  Google Scholar 

  39. HOU Bing, DIAO Ce, LI Dan-dan. An experimental investigation of geomechanical properties of deep tight gas reservoirs [J]. Journal of Natural Gas Science and Engineering, 2017, 47: 22–33. DOI:https://doi.org/10.1016/j.jngse.2017.09.004.

    Article  Google Scholar 

  40. BROWN E T, HOEK E. Trends in relationships between measured in situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts, 1978, 15(4): 211–215. DOI:https://doi.org/10.1016/0148-9062(78)91227-5.

    Article  Google Scholar 

  41. FENG Yu, HARRISON J P, BOZORGZADEH N. Uncertainty in in situ stress estimations: A statistical simulation to study the effect of numbers of stress measurements [J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5071–5084. DOI:https://doi.org/10.1007/s00603-019-01891-9.

    Article  Google Scholar 

  42. WANG Q Z, JIA X M, KOU S Q, ZHANG Z X, LINDQVIST P A. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: Analytical and numerical results [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 245–253. DOI:https://doi.org/10.1016/S1365-1609(03)00093-5.

    Article  Google Scholar 

  43. CASTRO J, CICERO S, SAGASETA C. A criterion for brittle failure of rocks using the theory of critical distances [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 63–77. DOI:https://doi.org/10.1007/s00603-015-0728-8.

    Article  Google Scholar 

  44. HAN Li-jun, HE Yong-nian, ZHANG Hou-quan. Study of rock splitting failure based on Griffith strength theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 116–121. DOI:https://doi.org/10.1016/j.ijrmms.2015.12.011.

    Article  Google Scholar 

  45. HSIEH A, DIGHT P, DYSKIN A V. The rock stress memory unrecoverable by the Kaiser effect method [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 190–195. DOI:https://doi.org/10.1016/j.ijrmms.2015.01.006.

    Article  Google Scholar 

  46. XU Xiang-tao, HUANG Run-qiu, LI Hua, HUANG Qiuxiang. Determination of poisson’s ratio of rock material by changing axial stress and unloading lateral stress test [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 853–857. DOI:https://doi.org/10.1007/s00603-014-0586-9.

    Article  Google Scholar 

  47. UNANDER T E, PAPAMICHOS E, TRONVOLL J, SKJ RSTEIN A. Flow geometry effects on sand production from an oil producing perforation cavity [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3, 4): 293.e1–293.e15. DOI:https://doi.org/10.1016/S1365-1609(97)00217-7.

    Google Scholar 

  48. PARK C, SYNN J H, SHIN H S, CHEON D S, LIM H D, JEON S W. Experimental study on the thermal characteristics of rock at low temperatures [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 81–86. DOI:https://doi.org/10.1016/j.ijrmms.2004.03.023.

    Article  Google Scholar 

  49. GOWD T N, RUMMEL F. Effect of confining pressure on the fracture behaviour of a porous rock [J]. International Journal of Rock Mechanics and Mining Sciences & amp; Geomechanics Abstracts, 1980, 17(4): 225–229. DOI:https://doi.org/10.1016/0148-9062(80)91089-X.

    Article  Google Scholar 

  50. ALAM A K M B, NIIOKA M, FUJII Y, FUKUDA D, KODAMA J I. Effects of confining pressure on the permeability of three rock types under compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 49–61. DOI:https://doi.org/10.1016/j.ijrmms.2013.11.006.

    Article  Google Scholar 

  51. SUKPLUM W, WANNAKAO L. Influence of confining pressure on the mechanical behavior of Phu Kradung sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 48–54. DOI:https://doi.org/10.1016/j.ijrmms.2016.04.001.

    Article  Google Scholar 

  52. JIANG Shui-hua, LI Dian-qing, ZHANG Li-min, ZHOU Chuang-bing. Time-dependent system reliability of anchored rock slopes considering rock bolt corrosion effect [J]. Engineering Geology, 2014, 175: 1–8. DOI:https://doi.org/10.1016/j.enggeo.2014.03.011.

    Article  Google Scholar 

  53. XUE Yu-ting, MISHRA B, GAO Dan-qing. Using the relaxation test to study variation in the time-dependent property of rock and the consequent effect on time-dependent roof failure [J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2521–2533. DOI:https://doi.org/10.1007/s00603-017-1232-0.

    Article  Google Scholar 

  54. LIU Yan-zhu. Pressure rod instability and Lyapunov stability [J]. Mechanics in Engineering, 2002, 24(4): 56–59. (in Chinese)

    Google Scholar 

  55. XUE Yun, CHEN Li-qun. Discuss the pressure rod instability and the stability of Lyapunov again [J]. Mechanics in Engineering, 2004, 26(5): 71–72. (in Chinese)

    Google Scholar 

  56. MENG Zhao-ping, LI Guo-qing. Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors [J]. Engineering Geology, 2013, 162: 108–117. DOI:https://doi.org/10.1016/j.enggeo.2013.04.013.

    Article  Google Scholar 

  57. DIEDERICHS M S. The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling [J]. Canadian Geotechnical Journal, 2007, 44(9): 1082–1116. DOI:https://doi.org/10.1139/t07-033.

    Article  Google Scholar 

  58. MARTIN C D, CHRISTIANSSON R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 219–228. DOI:https://doi.org/10.1016/j.ijrmms.2008.03.001.

    Article  Google Scholar 

  59. RANJITH P G, JASINGE D, CHOI S K, MEHIC M, SHANNON B. The effect of CO2 saturation on mechanical properties of Australian black coal using acoustic emission [J]. Fuel, 2010, 89(8): 2110–2117. DOI:https://doi.org/10.1016/j.fuel.2010.03.025.

    Article  Google Scholar 

  60. NICKSIAR M, MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks [J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 607–617. DOI:https://doi.org/10.1007/s00603-012-0221-6.

    Article  Google Scholar 

  61. CHEN Yu-long, ZUO Jian-ping, LIU De-jun, WANG Zhenbo. Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3449–3464. DOI:https://doi.org/10.1007/s10064-018-1336-0.

    Article  Google Scholar 

  62. CHEN Yu-long, TENG Jun-yang, SADIQ R A B, ZHANG Ke. Experimental study of bolt-anchoring mechanism for bedded rock mass [J]. International Journal of Geomechanics, 2020, 20(4): 04020019. DOI:https://doi.org/10.1061/(asce)gm.1943-5622.0001561.

    Article  Google Scholar 

  63. CHEN Yu-long, ZHANG Yu-ning, LI Xue-long. Experimental study on influence of bedding angle on gas permeability in coal [J]. Journal of Petroleum Science and Engineering, 2019, 179: 173–179. DOI:https://doi.org/10.1016/j.petrol.2019.04.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-xiang Song  (宋治祥).

Additional information

Foundation item

Projects(51974319, 52034009) supported by the National Natural Science Foundation of China; Project(2020JCB01) supported by the China University of Mining and Technology (Beijing)

Contributors

ZHANG Jun-wen provided the concept, idea and supervision of manuscript, gave the funding acquisition and provided the resources for the manuscript. SONG Zhi-xiang conducted the literature review, wrote the first draft of the manuscript and edited the draft of manuscript. WANG Shan-yong provided the re-supervision of manuscript.

Conflict of interest

ZHANG Jun-wen, SONG Zhi-xiang, and WANG Shan-yong declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jw., Song, Zx. & Wang, Sy. Mechanical behavior of deep sandstone under high stress-seepage coupling. J. Cent. South Univ. 28, 3190–3206 (2021). https://doi.org/10.1007/s11771-021-4791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4791-x

Key words

关键词

Navigation