Skip to main content
Log in

Recent research development of energy-absorption structure and application for railway vehicles

铁路车辆吸能结构的研究进展及应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future.

摘要

随着吸能结构在学术界和工业界的应用达到前所未有的规模,关于列车耐撞性设计和结构优化 最新进展的思考对于成功塑造未来的吸能结构就显得至关重要。实车冲击试验和数值仿真是目前研究 铁路车辆耐撞性的主要方法。列车的端部碰撞变形区域一般可采用两种结构设计形式:承载式吸能结 构设计形式和专有吸能结构设计形式,本文介绍的不同吸能结构可以适用于不同的铁路车辆,从而达 到耐撞性和经济性之间的平衡。为了提升吸能结构能量耗散的能力,对于多级吸能系统的研究层出不 穷,力求在现有吸能结构能量耗散能力达到极限时寻求突破。为了减少冲击伤害,乘员的自我保护姿 势也被广泛研究。迄今为止开展了大量的吸能结构的研究,但针对吸能结构冲击过程的分析与预测所 进行的研究较少,这也是未来吸能结构研究的诸多关键挑战之一。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MARSOLEK J, REIMERDES H G. Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns [J]. International Journal of Impact Engineering, 2004, 30: 1209–1223. DOI: https://doi.org/10.1016/j.ijimpeng.2004.06.006.

    Article  Google Scholar 

  2. European Committee for Standardization. EN 12663: 2007. Railway applications: Structural requirements of railway vehicle bodies [S]. London (UK): British Standard Published.

  3. European Committee for Standardization. EN 15227:2008. Railway applications: Crashworthiness requirements for railway vehicle bodies [S]. London (UK): British Standard Published.

  4. European Railway Agency. Technical specification for interoperability [S]. EU: Railway Interoperability and Safety Committee 2002.

    Google Scholar 

  5. British Standards Institution. Railway group standard GM/RT2100. Structural requirements for railway vehicles [S]. London (UK): RSSB.

  6. Federal Railroad Administration. Improving railroad safety and rail passenger technology through targeted research demonstrations: 1992–1997 [R]. 1999.

  7. MAYVILLE R A, STRINGFELLOW R G, RANCATORE R J. LOcomotive crashworthiness research. Final report. Volume 5: cab car crashworthiness report [R]. 1996.

  8. SEVERSON K J, PARENT D P, TYRELL D C. Two-car impact test of crash-energy management passenger rail cars: Analysis of occupant protection measurements [C]// ASME 2004 International Mechanical Engineering Congress and Exposition. New York, 2004: 87–96.

  9. STRANG J, HYNES R, PEACOCK T. Development of crash energy management specification for passenger rail equipment [J]. Transp Res Record, 2007: 76–83. DOI: https://doi.org/10.1109/RRCON.2006.215303.

  10. TYRELL D. Liquefied natural gas tender crashworthiness research [C]// 2015 Joint Rail Conference. New York: 2015: V001T02A015.

  11. HA N S, LU G. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181(8): 107496. DOI: https://doi.org/10.1016/j.compositesb.2019.107496.

    Article  Google Scholar 

  12. CHAMBE J E, BOUVET C, DORIVAL O, FERRERO J. Energy absorption capacity of composite thin-wall circular tubes under axial crushing with different trigger initiations [J]. Journal of Composite Materials, 2019, 9: 0021998319877221. DOI: https://doi.org/10.1177/0021998319877221.

    Google Scholar 

  13. YALCIN M M, GENEL K. On the axial deformation characteristic of PVC foam-filled circular aluminium tube: Effect of radially-graded foam filling [J]. Thin-Walled Structures, 2019, 144(11): 106335. DOI: https://doi.org/10.1016/j.tws.2019.106335.

    Article  Google Scholar 

  14. TIAN K, ZHANG Y, YANG F, ZHAO Q, FAN H L. Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths [J]. International Journal of Mechanical Sciences, 2020, 166(1): 105239. DOI: https://doi.org/10.1016/j.ijmecsci.2019.105239.

    Article  Google Scholar 

  15. ISAAC C W. Crushing response of circular thin-walled tube with non-propagating crack subjected to dynamic oblique impact loading [J]. International Journal of Protective Structures, 2020, 11(3): 41–68. DOI: https://doi.org/10.1177/2041419619849087.

    Article  Google Scholar 

  16. ALAVI NIA A, PARSAPOUR M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74(1): 155–165. DOI: https://doi.org/10.1016/j.tws.2013.10.005.

    Article  Google Scholar 

  17. HONG W, LAI C, FAN H. Frusta structure designing to improve quasi-static axial crushing performances of triangular tubes [J]. International Journal of Steel Structures, 2016, 16(1): 257–266. DOI: https://doi.org/10.1007/s13296-016-3019-7.

    Article  Google Scholar 

  18. GOYAL S, ANAND C S, SHARMA S K, SHARMA R. Crashworthiness analysis of foam filled star shape polygon of thin-walled structure [J]. Thin-Walled Structures, 2019, 144(11): 106312. DOI: https://doi.org/10.1016/j.tws.2019.106312.

    Article  Google Scholar 

  19. LIU W Y, LIN Z Q, WANG N L, DENG X. Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact [J]. Thin-Walled Structures, 2016, 100(3): 25–37. DOI: https://doi.org/10.1016/j.tws.2015.11.016.

    Article  Google Scholar 

  20. TIWARI G, IQBAL M A, GUPTA P K. Energy absorption characteristics of thin aluminium plate against hemispherical nosed projectile impact [J]. Thin-Walled Structures, 2018, 126: 246–257. DOI: https://doi.org/10.1016/j.tws.2017.04.014.

    Article  Google Scholar 

  21. DAO T D, HA N S, GOO N S, YU W R. Design, fabrication, and bending test of shape memory polymer composite hinges for space deployable structures [J]. Journal of Intelligent Material Systems and Structures, 2018, 29(8): 1560–1574. DOI: https://doi.org/10.1177/1045389X17742728.

    Article  Google Scholar 

  22. LIU J, ZHENG B, ZHANG K, YANG B, YU X. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: https://doi.org/10.1016/j.ijimpeng.2018.12.012.

    Article  Google Scholar 

  23. YAHAYA M A, RUAN D, LU G, DARGUSCH M S. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact-An experimental study [J]. International Journal of Impact Engineering, 2015, 75: 100–109. DOI: https://doi.org/10.1016/j.ijimpeng.2014.07.019.

    Article  Google Scholar 

  24. ALANTALIA, ALIA R A, UMERR, CANTWELL W J. Energy absorption in aluminium honeycomb cores reinforced with carbon fibre reinforced plastic tubes [J]. Journal of Sandwich Structures & Materials, 2019, 21(11): 2801–2815. DOI: https://doi.org/10.1177/1099636217727145.

    Article  Google Scholar 

  25. KANG H G, KIM J K. Damage mitigation of a steel column subjected to automobile collision using a honeycomb panel [J]. Journal of Performance of Constructed, 2020, 34(1): 04019107. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001394.

    Article  Google Scholar 

  26. ZHOU H, GUO R, BAO K, WEI H Y, LIU R. Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load [J]. Steel and Composite Structures, 2019, 33(12): 837–847. DOI: https://doi.org/10.12989/scs.2019.33.6.837.

    Google Scholar 

  27. KADER M A, HAZELL P J, BROWN A D, TAHTALI M, AHMED S, ESCOBEDO J P, SAADATFAR M. Novel design of closed-cell foam structures for property enhancement [J]. Additive Manufacturing, 2020, 31(1): 100976. DOI: https://doi.org/10.1016/j.addma.2019.100976.

    Article  Google Scholar 

  28. WANG Yong-hui, ZHAI Xi-mei. Numerical study and multi-objective optimization of an energy absorbing connector with curved plate and aluminum foam [J]. International Journal of Steel Structures, 2020, 20(1): 287–299. DOI: https://doi.org/10.1007/s13296-019-00288-2.

    Article  Google Scholar 

  29. GAO Guang-jun. The energy distribution of a train impact process based on the active-passive energy-absorption method [J]. Transportation Safety and Environment, 2019, 1(1): 54–67. DOI: https://doi.org/10.1093/transp/tdz002.

    Article  Google Scholar 

  30. GAO G J, GUAN W Y, LI J, DONG H P, ZOU X, CHEN W. Experimental investigation of an active-passive integration energy absorber for railway vehicles [J]. Thin-Walled Structures, 2017, 117: 89–97. DOI: https://doi.org/10.1016/j.tws.2017.03.029.

    Article  Google Scholar 

  31. ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial load [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 5–10. DOI: https://doi.org/10.1093/qjmam/13.1.10.

    Article  Google Scholar 

  32. ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: https://doi.org/10.1016/0734-743X(84)90005-8.

    Article  Google Scholar 

  33. HUANG X, LU G, YU T X. Energy absorption in splitting square metal tubes [J]. Thin-Walled Structures, 2002, 40: 153–165. DOI: https://doi.org/10.1016/S0263-8231(01)00058-1.

    Article  Google Scholar 

  34. MARZBANRAD J, MEHDIKHANLO M, SAEEDI POUR A. An energy absorption comparison of square, circular and elliptic steel and aluminum tubes under impact loading [J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 33: 159–166. DOI:https://doi.org/10.3906/muh-0904-11.

    Google Scholar 

  35. ALAVI NIA A, PARSAPOUR M. An investigation on the energy absorption characteristics of multi-cell square tubes [J]. Thin-Walled Structures, 2013, 68: 26–34. DOI: https://doi.org/10.1016/j.tws.2013.01.010.

    Article  Google Scholar 

  36. SONG Jie, CHEN Yan, LU Guo-xing. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures, 2012, 54: 65–71. DOI: https://doi.org/10.1016/j.tws.2012.02.007.

    Article  Google Scholar 

  37. MARZBANRAD J, REZA EBRAHIMI M. Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks [J]. Thin-Walled Structures, 2011, 49: 1605–1615. DOI: https://doi.org/10.1016/j.tws.2011.08.009.

    Article  Google Scholar 

  38. MARZBANRAD J, ABDOLLAHPOOR A, MASHADI B. Effects of the triggering of circular aluminum tubes on crashworthiness [J]. International Journal of Crashworthiness, 2009, 14(6): 1605–1615. DOI: https://doi.org/10.1080/13588260902896458.

    Article  Google Scholar 

  39. GAO Guang-jun, DONG Hai-peng, TIAN Hong-qi. Collision performance of square tubes with diaphragms [J]. Thin-Walled Structures, 2014, 80: 167–177. DOI: https://doi.org/10.1016/j.tws.2014.03.007.

    Article  Google Scholar 

  40. TANASKOVIĆ J, LUČANIN V M D. Experimental research of characteristics of modified tube absorbers of kinetic collision energy of passenger coaches [J]. Experimental Techniques, 2014, 38(3): 37–44. DOI: https://doi.org/10.1111/j.1747-1567.2011.00800.x.

    Article  Google Scholar 

  41. GIBSON L J, ASHBY M F, SCHAJER G S. The mechanics of two-dimensional cellular materials [J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1982, 382(1782): 25–42. DOI: https://doi.org/10.2307/2397267.

    Google Scholar 

  42. PAPKA S D, KYRIAKIDES S. In-plane compressive response and crushing of honeycomb [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(10): 1499–1532. DOI: https://doi.org/10.1016/0022-5096(94)90085-X.

    Article  Google Scholar 

  43. SUN De-qiang, ZHANG Wei-hong, WEI Yan-bin. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings [J]. Composite Structures, 2010, 92(11): 2609–2621. DOI: https://doi.org/10.1016/j.compstruct.2010.03.016.

    Article  Google Scholar 

  44. REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5, 6): 531–570. DOI: https://doi.org/10.1016/S0734-743X(97)00016-X.

    Article  Google Scholar 

  45. RUAN D, LU G. In-plane dynamic crushing of honeycombs—A finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. DOI: https://doi.org/10.1016/s0734-743x(02)00056-8.

    Article  Google Scholar 

  46. MASOUD H K, HAMID S A, HOSSEIN A, MAHMOUD S. Bitubular square tubes with different arrangements under quasi-static axial compression loading [J]. Materials and Design, 2013, 51: 1095–1103. DOI: https://doi.org/10.1016/j.matdes.2013.04.084.

    Article  Google Scholar 

  47. AKTAY L, TOKSOY A, GUDEN M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: Experimental and numerical analysis [J]. Materials and Design, 2006, 27(9): 556–565. DOI: https://doi.org/10.1016/j.matdes.2004.12.019.

    Article  Google Scholar 

  48. GHAMARIAN A, ZAREI HR, ABADI M T. Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes [J]. Thin-Walled Structures, 2011, 49(10): 1312–1319. DOI: https://doi.org/10.1016/j.tws.2011.03.005.

    Article  Google Scholar 

  49. YIN Han-feng, WEN Gui-lin, LIU Zhi-bo, QING Qi-xiang. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures [J]. Thin-Walled Structures, 2014, 75: 8–17. DOI: https://doi.org/10.1016/j.tws.2013.10.022.

    Article  Google Scholar 

  50. WANG X, ZHENG Z. Impact resistance and energy absorption of functionally graded cellular structures [J]. Applied Mechanics and Materials, 2011: 73–78. DOI: https://doi.org/10.4028/www.scientific.net/AMM.69.73.

  51. SINGH I, MISHRA B, BHATTACHARYA S. XFEM simulation of cracks, holes and inclusions in functionally graded materials [J]. International Journal of Mechanics and Materials in Design, 2011, 7(3): 199–218. DOI: https://doi.org/10.1007/s10999-011-9159-1.

    Article  Google Scholar 

  52. JONES N, JOURI W S. A study of plate tearing for ship collision and grounding damage [J]. Journal of Ship Research, 1994, 31(4): 00654361.

    Google Scholar 

  53. ZHENG Z M, CERZBICKI T. A theoretical study of steady-state wedge cutting through metal plates [J]. Int J Fracture, 1996, 78(3, 4): 45–66. DOI: https://doi.org/10.1007/bf00018500.

    Article  Google Scholar 

  54. LU G, CALLADINE C R. On the cutting of a plate by a wedge [J]. International Journal of Mechanical Sciences, 1990, 32(4): 293–313. DOI: https://doi.org/10.1016/0020-7403(90)90095-Z.

    Article  Google Scholar 

  55. CHENG Q, ALTENHOF W. Load/displacement and energy absorption performance of AA6061T6 tubes under cutting deformation mode [J]. International Journal of Crashworthiness, 2005, 1(1): 1–13. DOI: https://doi.org/10.1533/ijcr.2005.0376.

    Google Scholar 

  56. SHUN Y J, ALTENHOF W, LI Z B. A parametric study on extrusion geometry and blade quantity during axial cutting deformation of circular AA6061-T6 extrusions under impact and quasi-static loading [J]. International Journal of Impact Engineering, 2012, 49: 165–178. DOI: https://doi.org/10.1016/j.ijimpeng.2012.03.008.

    Article  Google Scholar 

  57. SHUN Y J, ALTENHOF W. An analytical model on the steady-state deformation of circular tubes under an axial cutting deformation mode [J]. International Journal of Solids and Structures, 2011, 48(2): 269–279. DOI: https://doi.org/10.1016/j.ijsolstr.2010.10.001.

    Article  MATH  Google Scholar 

  58. SHUN Y J, MAJUMDER A, ALTENHOF W. Axial cutting of AA6061-T6 circular extrusions under impact using single-and dual-cutter configurations [J]. International Journal of Impact Engineering, 2010, 37(6): 735–753. DOI: https://doi.org/10.1016/j.ijimpeng.2009.01.003.

    Article  Google Scholar 

  59. SHUN Y J, ALTENHOF W, TANYA K. An experimental investigation into the cutting deformation mode of AA6061-T6 round extrusions [J]. Thin-Walled Structures, 2006, 44: 773–786. DOI: https://doi.org/10.1016/j.tws.2006.05.009.

    Article  Google Scholar 

  60. DONG H P, GAO G J, CHEN X X, GUAN W Y, ZOU X. Crushing analysis of splitting-Bending steel plate energy absorber under axial loading [J]. International Journal of Mechanical Sciences, 2016, 110: 217–228. DOI: https://doi.org/10.1016/j.ijmecsci.2016.03.016.

    Article  Google Scholar 

  61. BING A. Collision avoidance and accident survivability, Volume l: Collision threat [R]. US Department of Transportation, 1993.

  62. TYRELL D. A train-to-train impact test of crash energy management passenger rail equipment [C]// Proceedings of Joint Rail Conference. Pueblo, Colorado, 2005. DOI: https://doi.org/10.1109/RRCON.2005.186063.

  63. VANLNGEN-DUNN C. Single passenger rail car impact test volume 11: Summary of occupant protection program [R]. US Department of Transportation, 2000.

  64. KIRKPATRICK S W. Development and validation of high fidelity vehicle crash simulation models [J]. SAE Technical Papers, 2000: 2000-01-0627. DOI: https://doi.org/10.4271/2000-01-0627.

  65. KIRKPATRICK S W, SCHROEDER M, SIMONS J W. Evaluation of passenger rail vehicle crashworthiness [J]. International Journal of Crashworthiness, 2001, 6(1): 95–106. DOI: https://doi.org/10.1533/cras.2001.0165.

    Article  Google Scholar 

  66. RAY M H, HIRANMAYEE K, KIRKPATRICK S W. Performance validation of two finite element models of a side impact dummy [J]. International Journal of Crashworthiness, 1999, 4(3): 287–304. DOI: https://doi.org/10.1533/cras.1999.0106.

    Article  Google Scholar 

  67. SIMONS J W, KIRKPATRICK S W. High-speed passenger train crashworthiness and occupant survivability [J]. International Journal of Crashworthiness, 1999, 4(2): 121–132. DOI: https://doi.org/10.1533/cras.1999.0095.

    Article  Google Scholar 

  68. TYRELL D, SEVERSON K P A. Train-to-train impact test: Analysis of structural measurements [C]// ASME 2002 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers 2002: 109–115.

    Google Scholar 

  69. MARTINEZ E, TYRELL D. Rail car impact tests with steel coil: car crush [C]// Proceeding of the 2003 IEEE/ASME Joint Rail Conference. 2003: 63–72. DOI: https://doi.org/10.1109/RRCON.2003.1204651.

  70. JACOBSEN K, TYRELL D. Rail car impact tests with steel coil: collision dynamics [C]// Proceeding of the 2002 IEEE/ASME Joint Rail Conference. 2003: 73–82. DOI: https://doi.org/10.1109/RRCON.2003.1204652.

  71. MAYVILLE R A, JOHNSON K N, STRINGFELLOW R G, TYRELL D. The development of a rail passenger coach car crush zone [C]// Proceeding of the 2003 IEEE/ASME Joint Rail Conference. 2003: 55–61. DOI: https://doi.org/10.1109/RRCON.2003.1204650.

  72. SCHOLES A, LEWIS J H. Development of crashworthiness for railway vehicle structures [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 1–16. DOI: https://doi.org/10.1243/PIME_PROC_1993_207_222_02.

    Article  Google Scholar 

  73. SCHOLES A. Passenger vehicle design loads and structural crashworthiness [C]// IMechE Conference on Railway Vehicle Body Structures. London: 1985: 147–154. DOI: https://doi.org/10.1243/PIME_PROC_1987_201_177_02.

  74. GAO G, WANG S. Crashworthiness of passenger rail vehicles: A review [J]. International Journal of Crashworthiness, 2019, 24(6): 664–676. DOI: https://doi.org/10.1080/13588265.2018.1511233.

    Article  Google Scholar 

  75. LU Z, LI B, YANG C, ZHAO H, XU P, YAO S, PENG Y, ZHANG D. Numerical and experimental study on the design strategy of a new collapse zone structure for railway vehicles [J]. International Journal of Crashworthiness, 2017, 22(5): 488–502. DOI: https://doi.org/10.1080/13588265.2017.1281080.

    Article  Google Scholar 

  76. XIE S, LIANG X, ZHOU H. Design and analysis of a composite energy-absorbing structure for use on railway vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(3): 825–839. DOI: https://doi.org/10.1177/0954409714566058.

    Article  Google Scholar 

  77. ZHANG H, PENG Y, HOU L, TIAN G, LI Z. A hybrid multi-objective optimization approach for energy-absorbing structures in train collisions [J]. Information Sciences, 2019, 481: 491–506. DOI: https://doi.org/10.1016/j.ins.2018.12.071.

    Article  Google Scholar 

  78. LI R, XU P, PENG Y. Scaled tests and numerical simulations of rail vehicle collisions for various train sets [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230: 1590–1600. DOI: https://doi.org/10.1177/0954409715605126.

    Article  Google Scholar 

  79. YU Y, GAO G, GUAN W. Scale similitude rules with acceleration consistency for trains collision [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466–2480. DOI: https://doi.org/10.1177/0954409718773562.

    Article  Google Scholar 

  80. XU P, LU S, YAN K. Energy absorption design study of subway vehicles based on a scaled equivalent model test [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 3–15. DOI: https://doi.org/10.1177/0954409718777371.

    Article  Google Scholar 

  81. LU S, XU P, YAN K. A force/stiffness equivalence method for the scaled modelling of a high-speed train head car [J]. Thin-Walled Structures, 2019, 137: 129–142. DOI: https://doi.org/10.1016/j.tws.2019.01.016.

    Article  Google Scholar 

  82. LEWIS J H, RASAIAH W G, SCHOLES A. Validation of measures to improve rail vehicle crashworthiness [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1996, 210(2): 73–85. DOI: https://doi.org/10.1243/PIME_PROC_1996_210_330_02.

    Article  Google Scholar 

  83. KHALKHALI A, MOSTAFAPOUR M, TABATABAIE S M, ANSARI B. Multi-objective crashworthiness optimization of perforated square tubes using modified NSGAII and MOPSO [J]. Structural and Multidisciplinary Optimization, Structural and Multidisciplinary Optimization, 2016, 54(1): 45–61. DOI: https://doi.org/10.1007/s00158-015-1385-y.

    Article  Google Scholar 

  84. MIRZAEI M, SHAKERI M, SADIGHI M, AKBARSHAHI H. Crashworthiness design for cylindrical tube using neural network and genetic algorithm [J]. Procedia Engineering, 2011, 14: 3346–3353. DOI: https://doi.org/10.1016/j.proeng.2011.07.423.

    Article  Google Scholar 

  85. DIAS J P, PEREIRAM S. Optimization methods for crashworthiness design using multibody models [J]. Computers and Structures, 2004, 82(17–19): 1371–1380. DOI: https://doi.org/10.1016/j.compstruc.2004.03.032.

    Article  Google Scholar 

  86. SUN Y Q, SPIRYAGIN M, COLE C. Rail passenger vehicle crashworthiness simulations using multibody dynamics approaches [J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 1–11. DOI: https://doi.org/10.1115/1.4035470.

    Google Scholar 

  87. YAO S, YAN K, LU S, XU P. Equivalence study involving rail vehicle collision test conditions [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 73–89. DOI: https://doi.org/10.1177/0954409718779940.

    Article  Google Scholar 

  88. WANG C, LIU R Q. Study on dynamic characteristics of train collision based on multibody dynamics [C]// IOP Conference Series: Earth and Environmental Science, 2018, 128(1): 012004. DOI: https://doi.org/10.1088/1755-1315/128/1/012004.

    Google Scholar 

  89. SHAO H, XU P, YAO S, PENG Y, LI R, ZHAO S. Improved multibody dynamics for investigating energy dissipation in train collisions based on scaling laws [J]. Shock and Vibration, 2016: 3084052. DOI: https://doi.org/10.1155/2016/3084052.

  90. LING L, DHANASEKAR M, THAMBIRATNAM D P. A passive road-rail crossing design to minimise wheel-rail contact failure risk under frontal collision of trains onto stuck trucks [J]. Engineering Failure Analysis, 2017, 80(6): 403–415. DOI: https://doi.org/10.1016/j.engfailanal.2017.07.003.

    Article  Google Scholar 

  91. LING L, DHANASEKAR M, THAMBIRATNAM D P. Frontal collision of trains onto obliquely stuck road trucks at level crossings: Derailment mechanisms and simulation [J]. International Journal of Impact Engineering, 2017, 100: 154–165. DOI: https://doi.org/10.1016/j.ijimpeng.2016.11.002.

    Article  Google Scholar 

  92. LING L, GUAN Q, DHANASEKAR M, THAMBIRATNAM D P. Dynamic simulation of train-truck collision at level crossings [J]. Vehicle System Dynamics, 2017, 55(1): 1–22. DOI: https://doi.org/10.1080/00423114.2016.1240811.

    Article  Google Scholar 

  93. LING L, DHANASEKAR M, THAMBIRATNAM D P, SUN Y Q. Minimising lateral impact derailment potential at level crossings through guard rails [J]. International Journal of Mechanical Sciences, 2016, 113: 49–60. DOI: https://doi.org/10.1016/j.ijmecsci.2016.04.011.

    Article  Google Scholar 

  94. XIE S C, ZHOU H, LIANG X FENG, REN X. Contrastive analysis and crashworthiness optimization of two composite thin-walled structures [J]. Journal of Central South University, 2014, 21(11): 4386–4394. DOI: https://doi.org/10.1007/s11771-014-2439-9.

    Article  Google Scholar 

  95. ZHANG H, PENG Y, HOU L, WANG D, TIAN G, LI Z. Multistage impact energy distribution for whole vehicles in high-speed train collisions: Modeling and solution methodology [J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2486–2499. DOI: https://doi.org/10.1109/TII.2019.2936048.

    Article  Google Scholar 

  96. TYRELL D C, SEVERSON K J, MAYVILLE R A, STRINGFELLOW R G, BERRY S, PERLMAN A B. Evaluation of cab car crashworthiness design modifications [C]// Proceedings of the 1997 IEEE/ASME Joint R ailroad Conference. 1997. DOI: https://doi.org/10.1109/RRCON.1997.581353.

  97. TYRELL D C, SEVERSON K J, MARQUIS B J. Train crashworthiness design for occupant survivability [J]. International Mechanical Engineering Congress and Exposition, 1995, 210(30): 59–74. https://www.researchgate.net/publication/266454760.

    Google Scholar 

  98. TYRELL D C, MARTINEZ E E, WIERZBICKI T. Crashworthiness studies of locomotive wide nose short hood designs [J]. Crashworthiness, Occupant Protection and Biomechanics in Transportation S ystems, 1999, 237(45). https://www.researchgate.net/publication/254031506.

  99. TYRELL D C. Rail passenger equipment accidents and the evaluation of crashworthiness strategies [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(2): 131–147. DOI: https://doi.org/10.1243/09544090260082371.

    Article  Google Scholar 

  100. TYRELL D C. US rail equipment crashworthiness standards [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(F2): 123–130. DOI: https://doi.org/10.1243/09544090260082362.

    Article  Google Scholar 

  101. GAOGJ, TIAN H Q. Train’s crashworthiness design and collision analysis [J]. Int J Crashworthiness, 2007, 12(1): 21–28. DOI: https://doi.org/10.1533/ijcr.2006.0138.

    Article  Google Scholar 

  102. XIE S C, ZHOU H. Impact characteristics of a composite energy absorbing bearing structure for railway vehicles [J]. Compos Part B: Eng, 2014, 67: 455–463. DOI: https://doi.org/10.1016/j.compositesb.2014.08.019.

    Article  Google Scholar 

  103. PENG Y, DENG W Y, XU P, YAO S G. Study on the collision performance of a composite energy-absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2015, 94: 663–672. DOI: https://doi.org/10.1016/j.tws.2015.05.016.

    Article  Google Scholar 

  104. XIE Su-chao, LI Hai-hong, YANG Wei-lin, WANG Ning. Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles [J]. Structural and Multidisciplinar/Optimization, 2018, 57(4): 1793–1807. DOI: https://doi.org/10.1007/s00158-017-1829-7.

    Article  Google Scholar 

  105. XIE Su-chao, LI Hai-hong, YANG Cheng-xing, YAO Shu-guang. Crashworthiness optimization of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimization [J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 2291–2308. DOI: https://doi.org/10.1016/j.tws.2018.03.014.

    Article  Google Scholar 

  106. XU P, YANG C, PENG Y. Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles [J]. International Journal of Mechanical Sciences, 2016, 107: 1–12. DOI: https://doi.org/10.1016/j.ijmecsci.2016.01.001.

    Article  Google Scholar 

  107. XU P, YANG C, PENG Y. Cut-out grooves optimization to improve crashworthiness of a gradual energy-absorbing structure for subway vehicles [J]. Materials & Design, 2016, 103: 132–143. DOI: https://doi.org/10.1016/j.matdes.2016.04.059.

    Article  Google Scholar 

  108. XU Ping, XING Jie, YAO Shu-guang. Energy distribution analysis and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2017, 115: 255–263. DOI: https://doi.org/10.1016/j.tws.2017.02.033.

    Article  Google Scholar 

  109. XU P, XU K, YAO S. Parameter study and multi-objective optimization of an axisymmetric rectangular tube with diaphragms for subways [J]. Thin-Walled Structures, 2019, 136: 186–199. DOI: https://doi.org/10.1016/j.tws.2018.12.025.

    Article  Google Scholar 

  110. WANG S, PENG Y, WANG T. Collision performance and multi-objective robust optimization of a combined multi-cell thin-walled structure for high speed train [J]. Thin-Walled Structures, 2019, 135: 341–355. DOI: https://doi.org/10.1016/j.tws.2018.10.044.

    Article  Google Scholar 

  111. WANG Shi-ming, PENG Yong, WANG Tian-tian, CHEN Xuan-zhen, HOU Li, ZHANG Hong-hao. The origami inspired optimization design to improve the crashworthiness of a multi-cell thin-walled structure for high speed train [J]. International Journal of Mechanical Sciences, 2019, 159: 345–358. DOI: https://doi.org/10.1016/j.ijmecsci.2019.06.017.

    Article  Google Scholar 

  112. YAO S, XIAO X, XU P. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles [J]. Thin-Walled Structures, 2018, 123: 360–370. DOI: https://doi.org/10.1016/j.tws.2017.10.031.

    Article  Google Scholar 

  113. YAN J, YAO S, XU P. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers [J]. International Journal of Mechanical Sciences, 2016, 105: 206–214. DOI: https://doi.org/10.1016/j.ijmecsci.2015.11.022.

    Article  Google Scholar 

  114. YAO S, LI Z, YAN J. Analysis and parameters optimization of an expanding energy-absorbing structure for a rail vehicle coupler [J]. Thin-Walled Structures, 2018, 125: 129–139. DOI: https://doi.org/10.1016/j.tws.2018.01.011.

    Article  Google Scholar 

  115. ALVES M L. End forming of thin-walled tubes [J]. Journal of Materials Processing Technology, 2006, 177(1–3): 183–187. DOI: https://doi.org/10.1016/j.jmatprotec.2006.04.040.

    Article  Google Scholar 

  116. ALVES L M, MARTINSPA F. Cold expansion and reduction of thin-walled PVC tubes using a die [J]. Journal of Materials Processing Technology, 2009, 209(9): 4229–4236. DOI: https://doi.org/10.1016/j.jmatprotec.2008.11.015.

    Article  Google Scholar 

  117. ALMEIDA B P P, ALVES M L, ROSA P A R, BRITO A G, MARTINS P A F. Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation [J]. International Journal of Machine Tools and Manufacture, 2006, 46(12, 13): 1643–1652. DOI: https://doi.org/10.1016/j.ijmachtools.2005.08.018.

    Article  Google Scholar 

  118. LI J, GAO G, GUAN W. Experimental and numerical investigations on the energy absorption of shrink circular tube under quasi-static loading [J]. International Journal of Mechanical Sciences, 2018, 137: 284–294. DOI: https://doi.org/10.1016/j.ijmecsci.2018.01.019.

    Article  Google Scholar 

  119. YAO S, LI Z, MA W. Crashworthiness analysis of a straight-tapered shrink tube [J]. International Journal of Mechanical Sciences, 2019, 157: 512–527. DOI: https://doi.org/10.1016/j.ijmecsci.2019.04.058.

    Article  Google Scholar 

  120. TANASKOVIC J. Experimental investigations of the shrinking-splitting tube collision energy absorber [J]. Thin-Walled Structures, 2015, 86: 142–147. DOI: https://doi.org/10.1016/j.tws.2014.10.007.

    Article  Google Scholar 

  121. STRONGE W J, YU T X, JOHNSON W. Long stroke energy dissipation in splitting tubes [J]. International Journal of Mechanical Sciences, 1983, 25(9, 10): 637–647. DOI: https://doi.org/10.1016/0020-7403(83)90073-5.

    Article  Google Scholar 

  122. YUEN S C K, ALTENHOF W, OPPERMAN C J. Axial splitting of circular tubes by means of blast load [J]. International Journal of Impact Engineering, 2013, 53: 17–28. DOI: https://doi.org/10.1016/j.ijimpeng.2012.09.003.

    Article  Google Scholar 

  123. NIKNEJAD A, REZAEI B, LIAGHAT G H. Empty circular metal tubes in the splitting process-theoretical and experimental studies [J]. Thin-Walled Structures, 2013, 72: 48–60. DOI: https://doi.org/10.1016/j.tws.2013.06.015.

    Article  Google Scholar 

  124. TANASKOVIC J, MILKOVIC D, LUCANIN V. Experimental investigations of the shrinking-splitting tube collision energy absorber [J]. Thin-Walled Structures, 2015, 86: 142–147. DOI: https://doi.org/10.1016/j.tws.2014.10.007.

    Article  Google Scholar 

  125. LI J, GAO G, DONG H. Study on the energy absorption of the expanding-splitting circular tube by experimental investigations and numerical simulations [J]. Thin-Walled Structures, 2016, 103: 105–114. DOI: https://doi.org/10.1016/j.tws.2016.01.031.

    Article  Google Scholar 

  126. LI J, GAO G, YU Y. Experimental and numerical study on splitting process of circular steel tube with enhanced crashworthiness performance [J]. Thin-Walled Structures, 2019, 145: 106406. DOI: https://doi.org/10.1016/j.tws.2019.106406.

    Article  Google Scholar 

  127. PENG Y, WANG S, YAO S. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2017, 120: 225–235. DOI: https://doi.org/10.1016/j.tws.2017.09.006.

    Article  Google Scholar 

  128. GUAN W, GAO G, LI J. Crushing analysis and multi-objective optimization of a cutting aluminum tube absorber for railway vehicles under quasi-static loading [J]. Thin-Walled Structures, 2018, 123: 395–408. DOI: https://doi.org/10.1016/j.tws.2017.11.031.

    Article  Google Scholar 

  129. WANG J, LU Z, ZHONG M. Coupled thermal-structural analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2019, 141: 360–373. DOI: https://doi.org/10.1016/j.tws.2019.04.026.

    Article  Google Scholar 

  130. GHAMARIAN A, TAHAYE ABADI M. Axial crushing analysis of end-capped circular tubes [J]. Thin-Walled Structures, 2011, 49(6): 743–752. DOI:: https://doi.org/10.1016/j.tws.2011.01.006.

    Article  Google Scholar 

  131. ZAREI H R, GHAMARIAN A. Experimental and numerical crashworthiness investigation of empty and foam-filled thin-walled tubes with shallow spherical caps [J]. Experimental Mechanics, 2014, 54(2): 115–126. DOI: https://doi.org/10.1007/s11340-013-9789-3.

    Article  Google Scholar 

  132. GHAMARIAN A, ZAREI H R, FARSI M A, ARIAEIFAR N. Experimental and numerical crashworthiness investigation of the empty and foam-filled conical tube with shallow spherical caps [J]. Strain, 2013, 49(3): 199–211. DOI: https://doi.org/10.1111/str.12028.

    Article  Google Scholar 

  133. PRAVEEN KUMAR A, JUSUF A, SANTOSA S P, DIRGANTARA T. Investigations on the influence of spherical caps in the axial impact characteristics of press-formed cylindrical tubular structures [J]. Advances in Structural Engineering, 2019. DOI: https://doi.org/10.1177/1369433218819576.

  134. PRAVEEN KUMAR A. Experimental analysis on the axial crushing and energy absorption characteristics of novel hybrid aluminium/composite-capped cylindrical tubular structures [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(11): 2234–2252. DOI: https://doi.org/10.1177/1464420719843157.

    Article  Google Scholar 

  135. PRAVEEN KUMAR A, SATHISH KUMAR M. Deformation characteristics of press-formed cylindrical tubes with shallow and hemispherical caps for frontal crash protective structures [J]. International Journal of Protective Structures, 2019: 1–19. DOI: https://doi.org/10.1177/2041419619830701.

  136. KUMAR A P, MANEIAH D. Crashworthiness behaviour of capped cylindrical aluminium [J]. International Journal of Mechanical and Production, Engineering Research and Development, 2019, 9(4): 1167–1172. DOI: IJMPERDAUG2019121.

    Article  Google Scholar 

  137. LIU G, XIE J, XIE S. Experimental and numerical investigations of a new U-shaped thin plate energy absorber subjected to bending and friction [J]. Thin-Walled Structures, 2017, 115: 215–224. DOI: https://doi.org/10.1016/j.tws.2017.02.025.

    Article  Google Scholar 

  138. YU Y, GAO G, DONG H. A numerical study on the energy absorption of a bending-straightening energy absorber with large stroke [J]. Thin-Walled Structures, 2018, 122: 30–41. DOI: https://doi.org/10.1016/j.tws.2017.10.003.

    Article  Google Scholar 

  139. CHEN X, GAO G, DONG H. Experimental and numerical investigations of a splitting-bending steel plate energy absorber [J]. Thin-Walled Structures, 2016, 98: 384–391. DOI: https://doi.org/10.1016/j.tws.2015.10.010.

    Article  Google Scholar 

  140. SEVERSON K J, PARENT D. Train-to-train impact test of crash-energy management passenger rail equipment: Occupant experiments [R]. US Department of Transportion, 2006.

  141. OMINO K, SHIROTO H, SAITO A. Estimation of passenger movements against the impact in train collision [J]. Quarterly Report of RTRI, 2002, 43(2): 77–82. DOI: https://doi.org/10.2219/rtriqr.43.77.

    Article  Google Scholar 

  142. XIE S C, TIAN H Q. Influencing factors and sensitivity analysis of occupant impact injury in passenger compartment [J]. Traffic Inj Prev, 2013, 14: 816. DOI: 0.1080/15389588.2013.768341.

    Article  Google Scholar 

  143. YANG W, XIE S, LI H. Design and injury analysis of the seated occupant protection posture in train collision [J]. Safety Science, 2019, 117: 263–275. DOI: https://doi.org/10.1016/j.ssci.2019.04.028.

    Article  Google Scholar 

  144. WOOD D P, WALSH D G. Car to car interaction in frontal collisions: A model for the behaviour of the car population and options for improved crashworthiness [J]. International Journal of Crashworthiness, 2002, 7(1): 79–96. DOI: https://doi.org/10.1533/cras.2002.0208.

    Article  Google Scholar 

  145. US National Administration. 2015 motor vehicle crashes: overview [R]. Washington DC: US National Administration 2016.

    Google Scholar 

  146. ZHANG Jun-yuan, WANG Dan-qi, WU Li-nan, LIU Le-dan. Conceptual design of the front-end structure of automobile considering crashworthiness: A three-stage target decomposition method [J]. International Journal of Crashworthiness, 2019, 25(2): 183–191. DOI: https://doi.org/10.1080/13588265.2018.1550911.

    Article  Google Scholar 

  147. YUSOF N S B, SAPUAN S M, SULTAN M T H, JAWAID M, MALEQUE M A. Design and materials development of automotive crash box: A review [J]. Ciencia e Tecnologia dos Materiais, 2017, 29(3): 129–144. DOI: https://doi.org/10.1016/j.ctmat.2017.09.003.

    Article  Google Scholar 

  148. DAVOODI M M, SAPUAN S M, AIDY A, ABU OSMAN N A, OSHKOUR A A, WAN ABAS W A B. Development process of new bumper beam for passenger car: A review [J]. Materials and Design, 2012, 40: 304–313. DOI: https://doi.org/10.1016/j.matdes.2012.03.060.

    Article  Google Scholar 

  149. ALBAHASH Z F, ANSARI M N M. A review on rear under-ride protection devices for trucks [J]. International Journal of Crashworthiness, 2017, 22(1): 95–109. DOI: https://doi.org/10.1080/13588265.2016.1228135.

    Article  Google Scholar 

  150. WITTEMAN W J. Improved vehicle crashworthiness design by control of the energy absorption for different collision situations [D]. Eindhoven: Eindhoven University 1999. DOI: https://doi.org/10.1007/978-3-642-40349-1_15.

    Google Scholar 

  151. BOIS P D, CHOU C C, FILETA B B, KINGAI H F M. Vehicle crashworthiness and occupant protection [M]. Michigan: Automotive Applications Committee, American Iron and Steel Institute 2004.

    Google Scholar 

  152. HAMZA K S K. Design for crashworthiness of vehicle structures via equivalent mechanism approximations and crush mode matching [C]// Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. 2004: 949–960. DOI: https://doi.org/10.1115/IMECE2004-62226.

  153. Mehrcampars. GMT bumper beam of Samand[M]. Iran: Mehrcampars 2003.

    Google Scholar 

  154. BODAPATIV K K. Evaluation of energy absorbing pliers underride guards for rear and side of large trucks [D]. Wichita State University. India, 2006.

    Google Scholar 

  155. XUE L, YANG J. A study on the application of energy-dissipating protection device in car-to-truck rear underride [C]// Proceedings-2013 5th Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2013. 2013, 8: 130–134. DOI: https://doi.org/10.1109/ICMTMA.2013.43.

    Article  Google Scholar 

  156. ALLIANZ S. Shipping 1912–2012, from Titanic to Costa Concordia [R]. Munich, Germany: Allianz Global Corporate & Specialty 2012.

    Google Scholar 

  157. CORPORATEA G. Safety and shipping review 2017 [R]. Munich, Germany: Allianz Global Corporate & Specialty 2017.

    Google Scholar 

  158. MINORSKY V U. An analysis of ship collision with reference to protection of nuclear power ships [R]. New York: Sharp(George G.) Inc 1958.

    Google Scholar 

  159. PRABOWO A R, PUTRANTO T, SOHN J M. Simulation of the behavior of a ship hull under grounding: Effect of applied element size on structural crashworthiness [J]. Journal of Marine Science and Engineering, 2019, 7 (8). DOI: https://doi.org/10.3390/jmse7080270.

  160. PRABOWO A R, SOHN J M, PUTRANTO T. Crashworthiness performance of stiffened bottom tank structure subjected to impact loading conditions: Ship-rock interaction [J]. Curved and Layered Structures, 2019, 6(1): 245–258. DOI: https://doi.org/10.1515/cls-2019-0016.

    Article  Google Scholar 

  161. PRABOWO A R, CAHYONO S I, SOHN J M. Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents [J]. Theoretical and Applied Mechanics Letters, 2019, 9(5): 320–327. DOI: https://doi.org/10.1016/j.taml.2019.05.002.

    Article  Google Scholar 

  162. OZGUC O, DAS P K, BARLTROP N. A comparative study on the structural integrity of single and double side skin bulk carriers under collision damage [J]. Marine Structures, 2005, 18(7, 8): 511–547. DOI: https://doi.org/10.1016/j.marstruc.2006.01.004.

    Article  Google Scholar 

  163. HARIS S, AMDAHL J. Analysis of ship-ship collision damage accounting for bow and side deformation interaction [J]. Marine Structures, 2013, 32: 18–48. DOI: https://doi.org/10.1016/j.marstruc.2013.02.002.

    Article  Google Scholar 

  164. RIO PRABOWO A, MYUNG BAE D, MIN SOHN J, FAUZAN ZAKKI A, CAO B, HYUNG CHO J. Effects of the rebounding of a striking ship on structural crashworthiness during ship-ship collision [J]. Thin-Walled Structures, 2017, 115(2): 225–239. DOI: https://doi.org/10.1016/j.tws.2017.02.022.

    Google Scholar 

  165. KAREN E. JACKSON E L F. NASA Langley research center impact dynamics research facility research survey [J]. Journal of Aircraft, 2003, 41(3): 511–522. DOI: https://doi.org/10.2514/1.3082.

    Google Scholar 

  166. PIFKOA B, WINTERR J D C. Crash simulation of composite and aluminum helicopter fuselages using a finite-element program [J]. Journal of Aircraft, 1979, 17(8): 591–597. DOI: https://doi.org/10.2514/3.57944.

    Google Scholar 

  167. MCCARTHY M A, WIGGENRAAD J F M. Numerical investigation of a crash test of a composite helicopter subfloor structure [J]. Composite Structures, 2001, 51(4): 345–359. DOI: https://doi.org/10.1016/S0263-8223(00)00150-1.

    Article  Google Scholar 

  168. WANG Z J, ZHOU H Z, KHALIULIN V I, SHABALOV A V. Six-ray folded configurations as the geometric basis of thin-walled elements in engineering structures [J]. Thin-Walled Structures, 2018, 130: 435–448. DOI: https://doi.org/10.1016/j.tws.2018.05.022.

    Article  Google Scholar 

  169. ZHOU Hua-zhi, WANG Zhi-jin. Application of foldcore sandwich structures in helicopter subfloor energy absorption structure [C]// The International Conference on Structural, Mechanical and Materials Engineering. 2017: 1–7. DOI: https://doi.org/10.1088/1757-899X/248/1/012033.

  170. ZHOU Hua-zhi, WANG Zhi-jin. Study and optimization of helicopter subfloor energy absorption structure with foldcore sandwich structures [C]// 4th International Conference on Advanced Materials, Mechanics and Structural Engineering. 2017: 1–5. DOI: https://doi.org/10.1088/1757-899X/269/1/012022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-yuan Guan  (关维元).

Additional information

Foundation item: Project(2018YFB1201701-08) supported by the National Key R&D Program of China; Project(ZLXD2017002) supported by the Strategic Leading Science and Technology Project of Central South University, China; Project(2019zzts145) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Gj., Zhuo, Ty. & Guan, Wy. Recent research development of energy-absorption structure and application for railway vehicles. J. Cent. South Univ. 27, 1012–1038 (2020). https://doi.org/10.1007/s11771-020-4349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4349-3

Key words

关键词

Navigation