Skip to main content
Log in

A new group contribution-based method for estimation of flash point temperature of alkanes

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression (MLR) and artificial neural network (ANN). This simple linear model shows a low average relative deviation (AARD) of 2.8% for a data set including 50 (40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance. ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Fire Protection Agency. Fire protection guide on hazardous materials [M]. 10th ed. Quincy: NFPA, 1991.

    Google Scholar 

  2. KATRITZKY A R, STOYANOVA-SLAVOVA I B, DOBCHEV D A, KARELSON M. QSPR modeling of flash points: An update [J]. J Mol Graph Model, 2007, 26: 529–536.

    Article  Google Scholar 

  3. JONES J C, GODEFROY J. A reappraisal of the flash point of formic acid [J]. J Loss Prev Process Ind, 2002, 15: 245–247.

    Article  Google Scholar 

  4. SUZUKI T, OHTAGUCHI K, KOIDE K. A method for estimating flash points of organic compounds from molecular structures [J]. J Chem Eng Jpn, 1991, 24: 258–261.

    Article  Google Scholar 

  5. KESHAVARZ M H, GHANBARZADEH M. Simple method for reliable predicting flash points of unsaturated hydrocarbons [J]. J Hazard Mater, 2011, 193: 335–341.

    Article  Google Scholar 

  6. PAN Y, JIANG J, WANG Z. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network [J]. J Hazard Mater, 2007, 147: 424–430.

    Article  Google Scholar 

  7. DAI Yi-min, LI Xun, CAO Zhong, YANG Dao-wu, HUANG Ke-long. Modeling flash point scale of hydrocarbon by novel topological electro-negativity indices [J]. The Chemical Industry and Engineering Society of China Journal, 2009, 60(10): 2420–2425. (in Chinese)

    Google Scholar 

  8. KATRITZKY A R, KUANAR M, SLAVOV S, HALL C D, KARELSON M, KAHN I, DOBCHEV D A. Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction [J]. Chem Rev, 2010, 110: 5714–5789.

    Article  Google Scholar 

  9. LIU X, LIU Z. Research progress on flash point prediction [J]. J Chem Eng Data, 2010, 55: 2943–2950.

    Article  Google Scholar 

  10. Hazardous Chemicals data. NFPA49. PC-49-94 [OB/OL]. [1994] http://ull.chemistry.uakron.edu/erd/index.html.

    Google Scholar 

  11. GHARAGHEIZI F, ESLAMIMANESH A, ILANI-KASHKOULI P, RICHON D, MOHAMMADI A H. QSPR molecular approach for representation/prediction of very large vapor pressure dataset [J]. Chem Eng Sci, 2012, 76: 99–107.

    Article  Google Scholar 

  12. ZHOU C Y, NIE C M, LI S, LI Z H. A novel semi-empirical topological descriptor Nt and the application to study on QSPR/QSAR [J]. J Comput Chem, 2007, 28: 2413–2423.

    Article  Google Scholar 

  13. BAGHERI M, GANDOMI A H, GOLBRAIKH A. Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure [J]. Thermochim Acta, 2012, 543: 96–106.

    Article  Google Scholar 

  14. GRAMATICA P. Principles of QSAR models validation: Internal and external [J]. QSAR & Combinatorial Science, 2007, 26: 694–701.

    Article  Google Scholar 

  15. DUCHOWICZ P R, CASTRO E A, FERNANDEZ F M, GONZALEZ M P. A new search algorithm for QSPR/QSAR theories: normal boiling points of some organic molecules [J]. Chem Phys Lett, 2005, 412: 376–380.

    Article  Google Scholar 

  16. DAI Yi-min, LIU You-nian, LI Xun, CAO Zhong, ZHU Zhi-ping, YANG Dao-wu. Estimation of surface tension of organic compounds using QSPR [J]. Journal of Central South University, 2012, 19(1): 93–100.

    Article  Google Scholar 

  17. BAGHERI M, BORHANI T N G, ZAHEDI G. Estimation of flash point and autoignition temperature of organic sulfur chemicals [J]. Energy Convers Manage, 2012, 58: 185–196.

    Article  Google Scholar 

  18. DAI Yi-min, HUANG Ke-long, LI Xun, CAO Zhong, ZHU Zhi-ping, YANG Dao-wu. Simulation of 13C NMR chemical shifts of carbinol carbon atoms by using quantitative structure-spectrum relationships [J]. Journal of Central South University of Technology, 2011, 18(2): 323–340.

    Article  Google Scholar 

  19. GHARAGHEIZI F. Prediction of upper flammability limit percent of pure compound from their molecular structures [J]. J Hazard Mater, 2009, 167: 507–510.

    Article  Google Scholar 

  20. ROY K, KABIR H. QSPR with extended topochemical atom (ETA) indices: Exploring effects of hydrophobicity, branching and electronic parameters on logCMC values of anionic surfactants [J]. Chem Eng Sci, 2013, 87: 141–151.

    Article  Google Scholar 

  21. ERIKSSON L, JAWORSKA J, WORTH A P, CRONIN M T D, MCDOWELL R M, GRAMATICA P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression-based QSARs [J]. Environ Health Perspect, 2003, 111: 1361–1375.

    Article  Google Scholar 

  22. PAN Y, JIANG J, WANG R, CAO H Y, CUI Y. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine [J]. J Hazard Mater, 2009, 168: 962–969.

    Article  Google Scholar 

  23. VAZHEV V V, ALDABERGENOV M K, VAZHEVA N V. Estimation of flash points and molecular masses of alkanes from their IR spectra [J]. Petrol Chem, 2006, 46: 136–139.

    Article  Google Scholar 

  24. ALBAHRI T A. Flammability characteristics of pure hydrocarbons [J]. Chem Eng Sci, 2003, 58: 3629–3641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-min Dai  (戴益民) or Xiao-qing Chen  (陈晓青).

Additional information

Foundation item: Projects(21376031, 21075011) supported by the National Natural Science Foundation of China; Project(2012GK3058) supported by the Foundation of Hunan Provincial Science and Technology Department, China; Project supported by the Postdoctoral Science Foundation of Central South University, China; Project(2014CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China; Project supported by the Innovation Experiment Program for University Students of Changsha University of Science and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Ym., Liu, H., Chen, Xq. et al. A new group contribution-based method for estimation of flash point temperature of alkanes. J. Cent. South Univ. 22, 30–36 (2015). https://doi.org/10.1007/s11771-015-2491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2491-0

Key words

Navigation