Skip to main content
Log in

Adsorption of hexavalent chromium onto kaolin clay based adsorbent

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A low-cost adsorbent modified kaolin clay (MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass concentration, contact time, electrolyte, and temperature. It is found that the adsorption efficiency is high within a wide pH range of 2.5–11.5, and equilibrium is achieved within 180 min. Increases in temperature and electrolyte concentration decrease the adsorption. The adsorption follows the pseudo-second-order kinetic model. The Langmuir isotherm shows better fit than Freundlich isotherm. The maximum uptake capacities calculated from the Langmuir model are 15.82, 15.55 and 15.22 mg/g at 298, 308 and 318 K, respectively. Thermodynamic parameters reveals the spontaneous and exothermic nature of the adsorption. The FTIR study indicates that hydroxyl groups, NH4 + ions and NO3 ions on MKC surface play a key role in Cr(VI) adsorption. The Cr(VI) desorbability of 86.53% is achieved at a Na2CO3 solution. The results show that MKC is suitable as a low-cost adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH close to that where pollutants are usually found in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEVANKUMAR L, MUTHUKUMARAN V, GOBINATH M B. Batch adsorption and kinetics of chromium (VI) removal from aqueous solutions by Ocimum americanum L. seed pods [J]. Journal of Hazardous Materials, 2009, 161(2/3): 709–713.

    Article  Google Scholar 

  2. RAJI C, ANIRUDHAN T S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics [J]. Water Research, 1998, 32(12): 3772–3780.

    Article  Google Scholar 

  3. DUPONT L, GUILLON E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran [J]. Environmental Science Technology, 2003, 37(18): 4235–4241.

    Article  Google Scholar 

  4. RAMOS-RAMÍREZ E, GUTIÉRREZ ORTEGA N L, CONTRERAS SOTO C A, OLGUÍN GUTIÉRREZ M T. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds [J]. Journal of Hazardous Materials, 2009, 172(2/3): 1527–1531.

    Article  Google Scholar 

  5. BARAL S S, DAS S N, ROY CHAUDHURY G, SWAMY Y V, RATH P. Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata [J]. Chemical Engineering Journal, 2008, 139(2): 245–255.

    Article  Google Scholar 

  6. SINGH V K, TIWARI P N. Removal and recovery of chromium (VI) from industrial wastewater [J]. Journal of Chemical Technology and Biotechnology, 1997, 69(3): 376–382.

    Article  Google Scholar 

  7. LAZARIDIS N K, ASOUHIDOU D D. Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite [J]. Water Research, 2003, 37(12): 2875–2882.

    Article  Google Scholar 

  8. MOHAN D, PITTMAN C U Jr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water [J]. Journal of Hazardous Materials, 2006, 137(2): 762–811.

    Article  Google Scholar 

  9. GURAJ G, IYER C S, LALITHAMBIKA C S P. Adsorption of cadimium and copper by modified kaolinite [J]. Applied Clay Science, 1998, 13(4): 293–306.

    Article  Google Scholar 

  10. ADEBOWALE K O, UNUABONAH I E, OLU-OWOLABI B I. The effect of some operating variables on the adsorption of lead and cadmium ious on kaolinite clay [J]. Journal of Hazardous Materials, 2006, 134: 130–139.

    Article  Google Scholar 

  11. CAI Peng, ZHENG Hong, WANG Chong, MA Hong-wen, HU Jian-chao, PU Yu-bing, LIANG Peng. Competitive adsorption characteristic of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxide [J]. Journal of Hazardous Materials, 2012, 213/214: 100–108.

    Article  Google Scholar 

  12. GUPTA V K, RASTOGI A, NAYAK A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material [J]. Journal of Colloid and Interface Science, 2010, 342(1): 135–141.

    Article  Google Scholar 

  13. ZHANG Hong, TANG Yi, CAI Dong-qing, LIU Xia-nan, WANG Xiang-qin, HUANG Qing, YU Zeng-liang. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 801–808.

    Article  Google Scholar 

  14. BUTLER J N. Ionic Equilibrium [M]. New York: Addison-Wesley, 1967: 327–329.

    Google Scholar 

  15. ANDERSON M A, RUBIN A J. Adsorption of inorganics at solid-liquid interfaces [M]. Michigan: Ann Arbor Science Publishers, Inc, 1981: 194–195.

    Google Scholar 

  16. LI Yu-jiang, GAO Bao-yu, WU Tao, SUN De-jun, LI Xia, WANG Biao, LU Feng-juan. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide [J]. Water Research, 2009, 43(12): 3067–3075.

    Article  Google Scholar 

  17. FENDORF S, EICK M J, GROSSL P, SPARKS D L. Arsenate and chromate retention mechanisms on goethite 1. surface structure [J]. Environmental Science Technology, 1997, 31(2): 315–320.

    Article  Google Scholar 

  18. HU Jing, CHEN Guo-hua, LO IRENE M C. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles [J]. Water Research, 2005, 39(18): 4528–4536.

    Article  Google Scholar 

  19. SELVARAJ K, MANONMANI S, PATTABHI S. Removal of hexavalent chromium using distillery sludge [J]. Bioresource Technology, 2003, 89(2): 207–211.

    Article  Google Scholar 

  20. HU Jing, LO IRENE M C. CHEN Guo-hua. Fast removal and recovery of Cr(VI) using surface-modified Jacobsite (MnFe2O4) nanoparticles [J]. Langmuir, 2005, 21(24): 11173–11179.

    Article  Google Scholar 

  21. BABEL S, KURNIAWAN T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere, 2004, 54(7): 951–967.

    Article  Google Scholar 

  22. LALVANI S B, HUBNER A, WILTOWSKI T S. Chromium adsorption by lignin [J]. Energy Sources, 2000, 22(1): 45–56.

    Article  Google Scholar 

  23. SELVI K, PATTABI S, KADIRVEDU K. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon [J]. Bioresource Technology, 2001, 80(1): 87–89.

    Article  Google Scholar 

  24. GUPTA V K, MORHAN D, SHARMA S, PARK K T. Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash-a sugar industry waste material [J]. Environmentalist, 1998, 19(2): 129–136.

    Article  Google Scholar 

  25. HO Y S, MCKAY G. The sorption of lead (II) ions on peat [J]. Water Research, 1999, 33(2): 578–584.

    Article  Google Scholar 

  26. HO Y S, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research, 2000, 34(3): 735–742.

    Article  Google Scholar 

  27. SADAOUI Z, HEMIDOUCHE S, ALLALOU O. Removal of hexavalent chromium from aqueous solutions by micellar compounds [J]. Desalination, 2009, 249(2): 768–773.

    Article  Google Scholar 

  28. BARAL S S, DAS S N, RATH P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust [J]. Biochemical Engineering Journal, 2006, 31(3): 216–222.

    Article  Google Scholar 

  29. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society, 1918, 40(9): 1361–1403.

    Article  Google Scholar 

  30. FREUNDLICH H M F. Uber die adsorption in lunsungen [J]. Journal of Physical Chemistry, 1906, 57: 385–470.

    Google Scholar 

  31. STUMM W, MORGAN J J. Aquatic chemistry: Chemical equilibria and rates in natural waters [M]. New York: John Wiley & Sons, Inc, 1996: 425–428.

    Google Scholar 

  32. VOLKVO A G, PAULA S, DEAMER D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers [J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Shi  (施周).

Additional information

Foundation item: Project(2012BAJ24B03) supported by the National Science and Technology Support Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Shi, Z., Luo, L. et al. Adsorption of hexavalent chromium onto kaolin clay based adsorbent. J. Cent. South Univ. 21, 3918–3926 (2014). https://doi.org/10.1007/s11771-014-2379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2379-4

Key words

Navigation