Skip to main content
Log in

A topology optimization method based on element independent nodal density

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A methodology for topology optimization based on element independent nodal density (EIND) is developed. Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function. The influence of the diameter of interpolation is discussed which shows good robustness. The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint. The rational approximation for material properties (RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions. Solutions are shown to meet stability, mesh dependence or non-checkerboard patterns of topology optimization without additional constraints. Finally, the computational efficiency is greatly improved by multithread parallel computing with OpenMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BENDSØE E M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224.

    Article  MathSciNet  Google Scholar 

  2. BENDSOE M P. Optimal shape design as a material distribution problem [J]. Structural and Multidisciplinary Optimization, 1989, 1(4): 193–202.

    Article  Google Scholar 

  3. ROZVANY G N. Aims scope methods history and unified terminology of computer-aided topology optimization in structural mechanics [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 90–108.

    Article  Google Scholar 

  4. ZHAO H, LONG K, MA Z D. Homogenization topology optimization method based on continuous field [J]. Advances in Mechanical Engineering, 2010: 1–7.

    Google Scholar 

  5. ROZVANY G, ZHOU M, BIRKER T. Generalized shape optimization without homogenization [J]. Structural and Multidisciplinary Optimization, 1992, 4(3): 250–252.

    Article  Google Scholar 

  6. L G J. Simp type topology optimization procedure considering uncertain load position [J]. Civil Engineering, 2012, 56(2): 213–219.

    Google Scholar 

  7. AMSTUTZ S. Connections between topological sensitivity analysis and material interpolation schemes in topology optimization [J]. Structural and Multidisciplinar Optimization, 2011, 43(6): 755–765.

    Article  MATH  MathSciNet  Google Scholar 

  8. XIE Y M, STEVEN G P. Evolutionary structural optimization [M]. Berlin: Springer, 1997: 37–51.

    Google Scholar 

  9. XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures, 1993, 49(5): 885–896.

    Article  Google Scholar 

  10. HUANG X, ZUO Z, XIE Y. Evolutionary topological optimization of vibrating continuum structures for natural frequencies [J]. Computers & Structures, 2010, 88(5): 357–364.

    Article  Google Scholar 

  11. HUANG X, XIE Y M. Evolutionary topology optimization of continuum structures: Methods and applications [M]. Chichester: John Wiley & Sons, 2010.

    Book  Google Scholar 

  12. SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000, 163(2): 489–528.

    Article  MATH  MathSciNet  Google Scholar 

  13. RONG J H, LIANG Q Q. A level set method for topology optimization of continuum structures with bounded design domains [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(17/18): 1447–1465.

    Article  MATH  MathSciNet  Google Scholar 

  14. CHEN S, CHEN W, LEE S. Level set based robust shape and topology optimization under random field uncertainties [J]. Structural and Multidisciplinary Optimization, 2010, 41(4): 507–524.

    Article  MATH  MathSciNet  Google Scholar 

  15. GUO X, ZHANG W S, WANG M Y, WEI P. Stress-related topology optimization via level set approach [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3439–3452.

    Article  MATH  MathSciNet  Google Scholar 

  16. SIGMUND O, PETERSSON J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima [J]. Struct Optim, 1998, 16(1): 68–75.

    Article  Google Scholar 

  17. CARBONARI R C, SILVA E C N, NISHIWAKI S. Topology optimization applied to the design of multi-actuated piezoelectric micro-tools [C]// Proceedings of SPIE 5383. Smart Structures and Materials 2004: Modeling, Signal Processing, and Control. San Diego: SPIE, 2004: 277–288.

    Chapter  Google Scholar 

  18. MATSUI K, TERADA K. Continuous approximation of material distribution for topology optimization [J]. International Journal for Numerical Methods in Engineering, 2004, 59(14): 1925–1944.

    Article  MATH  MathSciNet  Google Scholar 

  19. RAHMATALLA S F, SWAN C C. A q4/q4 continuum structural topology optimization implementation [J]. Structural and Multidisciplinary Optimization, 2004, 27(1): 130–135.

    Article  Google Scholar 

  20. PAULINO G H, LE C H. A modified q4/q4 element for topology optimization [J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 255–264.

    Article  MathSciNet  Google Scholar 

  21. POULSEN T A. Topology optimization in wavelet space [J]. International Journal for Numerical Methods in Engineering, 2002, 53(3): 567–582.

    Article  MATH  MathSciNet  Google Scholar 

  22. JOG C S, HABER R B. Stability of finite elements models for distributed-parameter optimization and topology design [J]. Computer Methods in Applied Meehanies and Engineering, 1996, 130(3/4): 203–226.

    Article  MATH  MathSciNet  Google Scholar 

  23. KANG Z, WANG Y Q. Structural topology optimization based on non-local shepard interpolation of density field [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(49): 3515–3525.

    Article  MATH  MathSciNet  Google Scholar 

  24. WANG Y, LUO Z, ZHANG N. Topological optimization of structures using a multilevel nodal density-based approximant [J]. Computer Modeling in Engineering and Sciences, 2012, 84(3): 229–236.

    MathSciNet  Google Scholar 

  25. WANG Y, KANG Z, HE Q. An adaptive refinement approach for topology optimization based on separated density field description [J]. Computers & Structures, 2013, 117: 10–22.

    Article  Google Scholar 

  26. GUEST J K, PREVOST J H, BELYTSCHKO T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions [J]. International Journal for Numerical Methods in Engineering, 2004, 61(2): 238–254.

    Article  MATH  MathSciNet  Google Scholar 

  27. DIAZ A, SIGMUND O. Checkerboard patterns in layout optimization [J]. Structural and Multidisciplinary Optimization, 1995, 10(1): 40–45.

    Article  Google Scholar 

  28. SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data [C]// Proceedings of the 1968 3rd ACM National Conference. New York: ACM, 1968: 517–524.

    Chapter  Google Scholar 

  29. BRODLIE K W, ASIM M R, UNSWORTH K. Constrained visualization using the shepard interpolation family [J]. Computer Graphics Forum, 2005, 24(4): 809–820.

    Article  Google Scholar 

  30. YANG R J, CHUANG C H. Optimal topology design using linear programming [J]. Computers & Structures, 1994, 52(2): 265–275.

    Article  MATH  Google Scholar 

  31. STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 22(2): 116–124.

    Article  Google Scholar 

  32. BENDSOE M P, SIGMUND O. Topology optimization: Theory, methods, and applications [M]. New York, USA: Springer-Verlag, 2003.

    Google Scholar 

  33. BECKERS M. Topology optimization using a dual method with discrete variables [J]. Structural and Multidisciplinary Optimization, 1999, 17(1): 14–24.

    Article  Google Scholar 

  34. RONG J H, LI W X, FENG B. A structural topological optimization method based on varying displacement limits and design space adjustments [J]. Advanced Materials Research, 2010, 97-101: 3609–3616.

    Article  Google Scholar 

  35. CHAPMAN B, JOST G, PAS R V D. Using openmp: Portable shared memory parallel programming [M]. Cambridge, Massachusetts: The MIT Press, 2007: 35–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-jun Yi  (易继军).

Additional information

Foundation item: Projects(11372055, 11302033) supported by the National Natural Science Foundation of China; Project supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology, China; Project(2012KFJJ02) supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle, Education Department of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Jj., Zeng, T., Rong, Jh. et al. A topology optimization method based on element independent nodal density. J. Cent. South Univ. 21, 558–566 (2014). https://doi.org/10.1007/s11771-014-1974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-1974-8

Key words

Navigation