Skip to main content
Log in

Hybrid control based on inverse Prandtl-Ishlinskii model for magnetic shape memory alloy actuator

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ULLAKKO K. Magnetically controlled shape memory alloys: A new class of actuator materials [J]. Journal of Materials Engineering and Performance, 1996, 5(3): 405–409.

    Article  Google Scholar 

  2. SUORSA I, TELLINEN J, PAGOUNIS E, AALTIO I, ULLAKKO K. Applications of magnetic shape memory actuators [C]// Proceedings of Eighth International Conference on Actuator. Bremen, 2002: 158–161.

    Google Scholar 

  3. BROWN P J, GANDY A P, ISHIDA K, KANOMATA T T, MATSUMOTO M, MORITO H, NEUMANN K U, OIKAWA K, OULADDIAF B, ZIEBECK K R A. Magnetic shape memory behaviour [J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2755–2760.

    Article  Google Scholar 

  4. BRISSAUD E. Three-dimensional modeling of piezoelectric materials [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(9): 2051–2065.

    Article  Google Scholar 

  5. RONKANEN P, KALLIO P, VILKKO M, VILKKO H N. Displacement control of piezoelectric actuators using current and voltage [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 160–166.

    Article  Google Scholar 

  6. MUDIVARTHI C, DATTA S, ATULASIMHA J. Anisotropy of constrained magnetostrictive materials [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(20): 3028–3034.

    Article  Google Scholar 

  7. OLABI A G, GRUNWALD A. Design and application of magnetostrictive materials [J]. Materials and Design, 2008, 29(2): 469–483.

    Article  Google Scholar 

  8. KIEFER B, KARACA H E, LAGOUDAS D C, KARAMAN I. Characterization and modeling of the magnetic field-induced strain and work output in Ni2MnGa magnetic shape memory alloys [J]. Journal of Magnetism and Magnetic Materials, 2007, 312(1): 164–175.

    Article  Google Scholar 

  9. KRENKE T, AKSOY S, DUMAN E, ACET M, MOYA X, MANOSA L, PLANES A. Hysteresis effects in the magnetic-field-induced reverse martensitic transition in magnetic shape-memory alloys [J]. Journal of Applied Physics, 2010, 108(4):043914.

    Article  Google Scholar 

  10. MOUSAVI S A, ENGDAHL G. Differential approach of scalar hysteresis modeling based on the Preisach theory [J]. IEEE Transactions on Magnetics, 2011, 47(10): 3040–3043.

    Article  Google Scholar 

  11. WONG P K, XU Q S, VONG C M, WONG H C. Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1988–2000.

    Article  Google Scholar 

  12. CHEN Xin-kai, OZAKI T. Adaptive control for plants in the presence of actuator and sensor uncertain hysteresis [J]. IEEE Transactions on Automatic Control, 2012, 56(1): 171–177.

    Article  MathSciNet  Google Scholar 

  13. KYOUNG K A, NGUYEN B K. Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic [J]. Mechatronics, 2008, 18(3): 141–152.

    Article  Google Scholar 

  14. ZHOU Miao-lei, TIAN Yan-tao, GAO Wei, YANG Zhi-gang. High precise control method for a new type of piezoelectric electro-hydraulic servo valve [J]. Journal of Central South University of Technology, 2007, 14(6): 832–837.

    Article  Google Scholar 

  15. MA Yan-hua, MAO Jian-qin, ZHANG Zhen. On generalized dynamic Preisach operator with application to hysteresis nonlinear systems [J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1527–1533.

    Article  Google Scholar 

  16. RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators [J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 428–431.

    Article  Google Scholar 

  17. BROKATE M, SPREKELS J. Hysteresis and phase transitions [M]. New York: Springer-Verlag, 1996: 42–52.

    Book  Google Scholar 

  18. KUHNEN K, JANOCHA H. Adaptive inverse control of piezoelectric actuators with hysteresis operators [C]// Proceedings of 1999 European Control Conference. Karlsruhe, 1999: F0291.

    Google Scholar 

  19. SU Chun-yi, WANG Qing-qing, CHEN Xin-kai, RAKHEJA S. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis [J]. IEEE Transactions on Automatic Control, 2008, 50(12): 2069–2073.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao-lei Zhou  (周淼磊).

Additional information

Foundation item: Project(51105170) supported by the National Natural Science Foundation of China; Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Ml., Gao, W. & Tian, Yt. Hybrid control based on inverse Prandtl-Ishlinskii model for magnetic shape memory alloy actuator. J. Cent. South Univ. 20, 1214–1220 (2013). https://doi.org/10.1007/s11771-013-1604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1604-x

Key words

Navigation