Skip to main content
Log in

Rock physics inversion based on an optimized MCMC method

  • Borehole Geophysics and Rock Properties
  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters. The Markov chain Monte Carlo (MCMC) algorithm is commonly used to solve rock physics inverse problems. However, all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm. What is obtained is an optimal solution of combining the petrophysical parameters with being inverted. This study introduces the alternating direction (AD) method into the MCMC algorithm (i.e. the optimized MCMC algorithm) to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion. Firstly, the Gassmann equations and Xu-White model are used to model shaly sandstone, and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established. Then, in the framework of Bayesian theory, the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter. The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity, saturation, and clay volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avseth, P., Mukerji, T., and Mavko, G., 2005, Quantitative seismic interpretation: Cambridge University Press.

  • Azevedo, L., and Soares A., 2017, Geostatistical methods for reservoir geophysics: Springer International Publishing, 131–132.

  • Berryman, J. G., 1992, Single-scattering approximations for coefficients in Biot’s equations of poroelasticity: Journal of the Acoustical Society of America, 91, 551–571.

    Article  Google Scholar 

  • Bosch, M., Carvajal, C., Rodrigues, J., et al., 2009, Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir: Geophysics, 74(2), O1–O15.

    Article  Google Scholar 

  • de Figueiredo, L. P., Grana, D., Roisenberg, M., et al., 2018, Joint Bayesian inversion based on rock-physics prior modeling for the estimation of spatially correlated reservoir properties: Geophysics, 83(5): 1SO–Z29.

    Article  Google Scholar 

  • de Figueiredo, L. P., Grana, D., Roisenberg, M., et al., 2019a, Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion: Geophysics, 84(3): R463–R476.

    Article  Google Scholar 

  • de Figueiredo, L. P., Grana, D., Roisenberg, M., et al., 2019b, Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion: Geophysics, 84(5): M1–M13.

    Article  Google Scholar 

  • Deng, X. H., Liu, C., Guo, Z. Q., et al., 2019, Rock physics inversion and quantitative seismic interpretation for the longmaxi shale gas reservoir: Journal of Geophysics and Engineering, 16(3), 652–665.

    Article  Google Scholar 

  • Dvorkin, J., Nur A., and Yin H., 1994, Effective properties of cemented granular materials: Mechanics of Materials, 18, 351–366.

    Article  Google Scholar 

  • Gassmann, F., 1951, Über die elastizität poröser medien, Vier der Natur Gesellschaft Zürich, 96, 1–23.

    Google Scholar 

  • Grana, D., 2016, Bayesian linearized rock-physics inversion: Geophysics, 81(6), D625–D641.

    Article  Google Scholar 

  • Grana, D., 2018, Joint facies and reservoir properties inversion: Geophysics, 83(3), M15–M24.

    Article  Google Scholar 

  • Grana, D., de Figueiredo, L. P. D., and Azevedo, L., 2019, Uncertainty quantification in bayesian inverse problems with model and data dimension reduction: Geophysics, 84(6), 1–59.

    Article  Google Scholar 

  • Grana, D., Mukerji, T., Dvorkin, J., et al., 2012, Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method: Geophysics, 77(4), M53–M72.

    Article  Google Scholar 

  • Hill, R., 1952, The elastic behavior of crystalline aggregate: Proceedings of the Physical Society, 65, 349–354.

    Article  Google Scholar 

  • Hong, T. C. and Sen, M. K., 2009, A new MCMC algorithm for seismic wave form inversion and corresponding uncertainty analysis: Geophysical Journal International, 177(1), 14–32.

    Article  Google Scholar 

  • Jiang, W., Chen, X. H., Zhang, J., et al., 2019, Impedance inversion of pre-stack seismic data in the depth domain: Applied Geophysics, 16(4), 427–437.

    Article  Google Scholar 

  • Kuster, G. T. and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two media, Part I. Theoretical considerations: Geophysics, 39, 587–606.

    Article  Google Scholar 

  • Lang, X. and Grana, D., 2018, Bayesian linearized petrophysical avo inversion. Geophysics, 83(3), 5MJ–Z13.

    Article  Google Scholar 

  • Li, H. B., Zhang, J. J., Pan, H. J., et al., 2021, Nonlinear simultaneous inversion of pore structure and physical parameters based on elastic impedance: Science China Earth Sciences, 64(6), 977–991.

    Article  Google Scholar 

  • Liu C., Fu W., Guo, Z.Q., et al., 2018, Rock physics inversion for anisotropic shale reservoirs based on Bayesian scheme: Chinese Journal of Geophysics, 61(6), 2589–2600.

    Google Scholar 

  • Liu, Q., Yin, X. Y., and Li, C., 2015, Fluid discrimination based on rock physics templates: Journal of Geophysics and Engineering, 12(5), 830–838.

    Article  Google Scholar 

  • Mattia, A., 2018, Estimating petrophysical reservoir properties through extended elastic impedance inversion: applications to off-shore and on-shore reflection seismic data: Journal of Geophysics and Engineering, 15(5), 2079–2090.

    Article  Google Scholar 

  • Mukerji, T., Avseth, P., Mavko, G., et al., 2001, Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization: Leading Edge, 20(3), 313–319.

    Article  Google Scholar 

  • Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time-to-porosity transform: SPWLA, 21st Annual Logging Symposium, 21:1–13.

    Google Scholar 

  • Shi, L., Wang, P., Liu, J., et al., 2020, Physical properties prediction for tight sandstone reservoirs: Geophysical Prospecting for Petroleum, 59(1), 98–107.

    Google Scholar 

  • Spikes, K., Mukerji, T., Dvorkin, J., et al., 2007, Probabilistic seismic inversion based on rock-physics models: Geophysics, 72(5), R87–R97.

    Article  Google Scholar 

  • Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation: New York: Society for Industrial and Applied Mathematics, 1–4.

    Book  Google Scholar 

  • Wood, A. W., 1955, A Textbook of Sound: New York: The MacMillan Co, 360.

    Google Scholar 

  • Wu, T. T., 1966, The effect of inclusion shape on the elastic moduli of a two-phase material: International Journal of Solids and Structures, 2, 1–8.

    Article  Google Scholar 

  • Wyllie, M. R., Gregory, A. R. and Gardner, L. W., 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, 21, 41–70.

    Article  Google Scholar 

  • Xu, S. Y. and White, R. E., 1995, A new velocity model for clay-sand mixtures: Geophysical Prospecting, 43, 91–118.

    Article  Google Scholar 

  • Xu, S. Y. and White, R. E., 1996, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44, 687–717.

    Article  Google Scholar 

  • Yin, X. Y., Zong, Z. Y., and Wu, G. C., 2015, Research on seismic fluid identification driven by rock physics: Science China Earth Sciences, 58(2), 159–171.

    Article  Google Scholar 

  • Zhang, B., Liu, C., Guo, Z. et al., 2018, Probabilistic reservoir parameters inversion for anisotropic shale using a statistical rock physics model Chinese Journal of Geophysics, 61(6), 2601–2617.

    Google Scholar 

  • Zhang, G. Z., Wang, D. Y., Yin, X. Y., et al., 2011, Study on prestack seismic inversion using Markov Chain Monte Carlo: Chinese Journal of Geophysics, 54(11), 2926–2932.

    Google Scholar 

  • Zhao, L. X., Nasser, M. and Han D. H., 2013, Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs: Geophysical Prospecting, 61(4), 827–841.

    Article  Google Scholar 

  • Zhong Y. Y., 2013, Norm optimization via Alternating Direction Method of Multipliers: Dalian University of technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bing Li.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 42174146), CNPC major forward-looking basic science and technology projects (No. 2021DJ0204).

Zhang Jiajia graduated from Ocean University of China with a bachelor’s degree in geoscience information in 2007, graduated from Ocean University of China with a master’s degree in earth exploration and information technology in 2010, and graduated from Research Institute of Petroleum Exploration and Development, PetroChina, with a doctor’s degree in earth exploration and information technology in 2013. Currently, he is an associate professor at China University of Petroleum (East China). His main research interests are seismic rock physics theory and experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Li, HB., Zhang, GZ. et al. Rock physics inversion based on an optimized MCMC method. Appl. Geophys. 18, 288–298 (2021). https://doi.org/10.1007/s11770-021-0900-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-021-0900-8

Keywords

Navigation