Skip to main content
Log in

Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native (Suaeda salsa) and invasive (Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon (SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents (g/kg) and stocks (kg/m2) were significantly increased (P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer (0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios (LnRR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase (2–4 years in this study) due to the negative LnRR values, especially for 20–60 cm depth. And the SOCD in surface layer (0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer (Adjusted R2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai J H, Huang L B, Yan D H et al., 2011. Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environmental Research and Risk Assessment, 25(5): 671–676. doi: 10.1007/s 00477-011-0475-7

    Article  Google Scholar 

  • Bai J H, Zhang G L, Zhao Q Q et al., 2016. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6: 34835. doi: 10.1038/srep34835

    Article  Google Scholar 

  • Belnap J, Phillips S L, Sherrod S K et al., 2005. Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology, 86(11): 3007–3017. doi: 10.1890/05-0333

    Article  Google Scholar 

  • Chacón N, Herrera I, Flores S et al., 2009. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones. Biology and Fertility of Soils, 45(3): 321–328. doi: 10.1007/s00374-008-0342-y

    Article  Google Scholar 

  • Chen Y P, Chen G C, Ye Y, 2015. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Science of the Total Environment, 526: 19–28. doi: 10.1016/j.scitotenv.2015.04.077

    Article  Google Scholar 

  • Cheng W X, 2009. Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology and Biochemistry, 41(9): 1795–1801. doi: 10.1016/j.soilbio.2008.04.018

    Article  Google Scholar 

  • Cheng X L, Luo Y Q, Chen J Q et al., 2006. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biology and Biochemistry, 38(12): 3380–3386. doi: 10.1016/j.soilbio.2006.05.016

    Article  Google Scholar 

  • Cheng X L, Chen J Q, Luo Y Q et al., 2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma, 145(3–4):177–184. doi: 10.1016/j.geoderma.2008.02.013

    Article  Google Scholar 

  • Chmura G L, Anisfeld S C, Cahoon D R et al., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemistry Cycles 17(4): 1111. doi: 10.1029/2002GB001917

    Article  Google Scholar 

  • Chmura G L, 2013. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean & Coastal Management, 83: 25–31. doi: 10.1016/j.ocecoaman.2011.09.006

    Article  Google Scholar 

  • Ding Weixin, Cai Zucong 2002. Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands. Acta Ecologica Sinica, 22(10): 1672–1679. (in Chinese)

    Google Scholar 

  • Ehrenfeld J G, 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6(6): 503–523. doi: 10.1007/s10021-002-0151-3

    Article  Google Scholar 

  • Ehrenfeld J G, 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41: 59–80. doi: 10.1146/annurev-ecolsys-102209-144650

    Article  Google Scholar 

  • Feng Zhenxing, Gao Jianhua, Chen Lian et al., 2015. The response of organic carbon content to biomass dynamics in Spartina alterniflora marsh. Acta Ecologica Sinica, 35(7): 2038–2047. (in Chinese)

    Google Scholar 

  • Gebrehiwet T, Koretsky M C, Krishnamurthy R V, 2008. Influence of Spartina and Juncus on saltmarsh sediments. III. Organic geochemistry. Chemical Geology, 255(1–2): 114–119. doi: 10.1016/j.chemgeo.2008.06.015

    Google Scholar 

  • Hawkes C V, Wren I F, Herman D J et al., 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8(9): 976–985. doi: 10.1111/j.1461-0248.2005.00802.x

    Article  Google Scholar 

  • Hedges L V, Gurevitch J, Curtis P S, 1999. The meta-analysis of response ratios in experimental ecology. Ecology, 80(4): 1150–1156. doi: 10.2307/177062

    Article  Google Scholar 

  • Hobley E, Wilson B, Wilkie A et al., 2015. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390(1–2): 111–127. doi: 10.1007/s11104-015-2380-1

    Article  Google Scholar 

  • Huang Jiafang, Tong Chuan, Liu Zexiong et al., 2011. Plantmediated methane transport and emission from a Spartina alterniflora marsh. Chinese Bulletin of Botany, 46(5): 534–543. (in Chinese)

    Article  Google Scholar 

  • Huang L B, Bai J H, Chen B et al., 2012. Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China. Ecological Informatics, 10: 49–55. doi: 10.1016/j.ecoinf.2011.11.001

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Jackson R B, Banner J L, Jobbágy E G et al., 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418(6898): 623–626. doi: 10.1038/nature00910

    Article  Google Scholar 

  • Jiang D J, Fu X F, Wang K, 2013. Vegetation dynamics and their response to freshwater inflow and climate variables in the Yellow River Delta, China. Quaternary International, 304: 75–84. doi: 10.1016/j.quaint.2012.10.059

    Article  Google Scholar 

  • Jin Baoshi, Gao Dengzhou, Yang Ping et al., 2016. Change of soil organic carbon with different years of Spartina alterniflora invasion in wetlands of Minjiang River Estuary. Journal of Natural Resources, 31(4): 608–619. (in Chinese)

    Google Scholar 

  • Jobbágy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423–436. doi: 10.1890/1051-0761 (2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Liao C Z, Luo Y Q, Jiang L F et al., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10(8): 1351–1361. doi: 10.1007/s10021-007-9103-2

    Article  Google Scholar 

  • Liao C Z, Peng R H, Luo Y Q et al., 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177(3): 706–714. doi: 10.1111/j.1469-8137.2007.02290.x

    Article  Google Scholar 

  • Liu Yu, Li Xiuzhen, Yang Z, hong zheng et al., 2013. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China. Chinese Journal of Applied Ecology, 24(8): 2129–2134. (in Chinese)

    Google Scholar 

  • Liu Zhiyong, Pan Shaoming, Liu Xuying et al., 2010. Distribution of 137Cs and 210Pb in sediments of tidal flats in north Jiangsu Province. Journal of Geographical Sciences, 20(1): 91–108. doi: 10.1007/s11442-010-0091-3

    Article  Google Scholar 

  • Lu J B, Zhang Y, 2013. Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China. Ecological Engineering, 52: 175–181. doi: 10.1016/j.ecoleng. 2012.12.107

    Article  Google Scholar 

  • Lu W Z, Xiao J F, Liu F et al., 2017. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology, 23(3): 1180–1198. doi: 10.1111/gcb.13424

    Article  Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow J D et al., 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302(5649): 1385–1387. doi: 10.1126/science.1089543

    Article  Google Scholar 

  • Mora J L, Guerra J A, Armas-Herrera C M et al., 2014. Storage and depth distribution of organic carbon in volcanic soils as affected by environmental and pedological factors. CATENA, 123: 163–175. doi: 10.1016/j.catena.2014.08.004

    Article  Google Scholar 

  • Nelson D W, Sommers L E, 1982. Total carbon, organic carbon,and organic matter. In: Page A L, Miller R H, and Keeney D R (eds). Methods of Soil Analysis. Part 3. Chemical Methods. Wisconsin: American Society of Agronomy, 539–579.

  • Pan Ting, Zeng Liufu, Zeng Congsheng et al., 2015. Effects of Spartina alterniflora invasion on soil organic carbon in the bare tidal flat wetland of Minjiang River estuary. Science of Soil and Water Conservation, 13(1): 84–90. (in Chinese)

    Google Scholar 

  • Peng R H, Fang C M, Li B et al., 2011. Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary, China. Oecologia, 165(3): 797–807. doi: 10.1007/s00442-010-1887-7

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme P E et al., 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18(5): 1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x

    Article  Google Scholar 

  • Ren Guangbo, Liu Yanfen, Ma Yi et al., 2014. Spartina alterniflora monitoring and change analysis in Yellow River Delta by remote sensing technology. Acta Laser Biology Sinica, 23(6): 596–603. (in Chinese)

    Google Scholar 

  • Ruehlmann J, Körschens M, 2009. Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal, 73(3): 876–885. doi: 10.2136/sssaj2007.0149

    Article  Google Scholar 

  • Sardans J, Bartrons M, Margalef O et al., 2017. Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23(3): 1282–1291. doi: 10.1111/gcb.13384

    Article  Google Scholar 

  • Shao Xuexin, Yang Wenying, Wu Ming et al., 2011. Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands. Chinese Journal of Applied Ecology, 22(3): 658–664. (in Chinese)

    Google Scholar 

  • Souza-Alonso P, Guisande-Collazo A, González L, 2015. Gradualism in Acacia dealbata Link invasion: impact on soil chemistry and microbial community over a chronological sequence. Soil Biology and Biochemistry, 80: 315–323. doi: 10.1016/j.soilbio.2014.10.022

    Article  Google Scholar 

  • Stark J M, Norton J M, 2014. The invasive annual cheat grass increases nitrogen availability in 24-year-old replicated field plots. Oecologia, 177(3): 799–809. doi: 10.1007/s00442-014-3093-5

    Article  Google Scholar 

  • Tan Z X, Lal R, Smeck N E et al., 2004. Relationships between surface soil organic carbon pool and site variables. Geoderma, 121(3–4): 187–195. doi: 10.1016/j.geoderma.2003.11.003

    Article  Google Scholar 

  • Wang Gang, Yang Wenbin, Wang Guoxiang et al., 2013. The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions, sources and distribution. Acta Ecologica Sinica, 33(8): 2474–2483. (in Chinese)

    Article  Google Scholar 

  • Xiang J, Liu D Y, Ding W X et al., 2015. Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh. Atmospheric Environment, 112: 72–80. doi: 10.1016/j.atmosenv. 2015.04.035

    Article  Google Scholar 

  • Yang W, Zhao H, Chen X L et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 61: 50–57. doi: 10.1016/j.ecoleng. 2013.09.056

    Article  Google Scholar 

  • Yang W, An S Q, Zhao H et al., 2016. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecological Engineering, 86: 174–182. doi: 10.1016/j. ecoleng.2015.11.010

    Article  Google Scholar 

  • Yang Y H, Fang J Y, Tang Y H et al., 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14(7): 1592–1599. doi: 10.1111/j. 1365-2486.2008.01591.x

    Article  Google Scholar 

  • Yang Z S, Ji Y J, Bi N S et al., 2011. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison. Estuarine, Coastal and Shelf Science, 93(3): 173–181. doi: 10.1016/j.ecss.2010.06.005

    Article  Google Scholar 

  • Yuan J J, Ding W X, Liu D Y et al., 2015. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21(4): 1567–1580. doi: 10. 1111/gcb.12797

    Article  Google Scholar 

  • Yuan Junji, Xiang Jian, Liu Deyan et al., 2014. Diel variation of CH4 and N2O emissions in the salt marsh with Spartina alterniflora invasion. Ecology and Environmental Sciences, 23(8): 1251–1257. (in Chinese)

    Google Scholar 

  • Zhang Wenmin, Wu Ming, Wang Meng et al., 2014. Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou Bay. Acta Pedologica Sinica, 51(6): 1351–1360. (in Chinese)

    Google Scholar 

  • Zhang Xianglin, Shi Shengli, Pan Genxing et al., 2008. Changes in Eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou, Fujian, China. Advances in Earth Science, 23(9): 974–981. (in Chinese)

    Google Scholar 

  • Zhang Y H, Ding W X, Cai Z C et al., 2010a. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmospheric Environment, 44(36): 4588–4594. doi: 10.1016/j.atmosenv.2010. 08.012

    Article  Google Scholar 

  • Zhang Y H, Ding W X, Luo J F et al., 2010b. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry, 42(10): 1712–1720. doi: 10. 1016/j.soilbio.2010.06.006

    Article  Google Scholar 

  • Zhou C F, An S Q, Deng Z F et al., 2009. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering, 35(4): 536–543. doi: 10.1016/j. ecoleng.2008.01.004

    Article  Google Scholar 

  • Zhou L Y, Yin S L, An S Q et al., 2015. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in Eastern Salt Marsh of China. Clean–Soil, Air, Water, 43(4): 569–576. doi: 10.1002/clen.201300838

    Article  Google Scholar 

  • Zinn Y L, Lal R, Resck D V S, 2005. Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma, 127(1–2): 168–173. doi: 10.1016/j.geoderma.2005.02.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Bai.

Additional information

Foundation item: Under the auspices of the National Key R & D Program of China (No. 2017YFC0505906), the National Natural Science Foundation of China (No. 51639001, 51379012), the Interdiscipline Research Funds of Beijing Normal University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Bai, J., Jia, J. et al. Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China. Chin. Geogr. Sci. 28, 374–385 (2018). https://doi.org/10.1007/s11769-018-0955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0955-5

Keywords

Navigation