Skip to main content
Log in

Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Content and density of soil organic carbon (SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon (DOC), microbial biomass carbon (MBC), readily oxidized carbon (ROC) and readily mineralized carbon (RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates (< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundson R, 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29: 535–562. doi: 10.1146/annurev.earth.29.1.535.

    Article  Google Scholar 

  • Asensio V, Vega F A, Covelo E F, 2014. Effect of soil reclamation process on soil C fractions. Chemosphere, 95: 511–518. doi: 10.1016/j.chemosphere.2013.09.108

    Article  Google Scholar 

  • Bao K S, Zhao H M, Xing W et al., 2011. Carbon accumulation in temperate wetlands of Sanjiang Plain, Northeast China. Soil Science Society of America Journal, 75(6): 2386–2397. doi: 10.2136/sssaj2011.0157

    Article  Google Scholar 

  • Benbi D K, Brar K, Toor A S et al., 2015a. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma, 237-238: 149–158. doi: 10.1016/j.geoderma.2014.09.002

    Article  Google Scholar 

  • Benbi D K, Brar K, Toor A S et al., 2015b. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere, 25(4): 534–545. doi: 10.1016/S1002-0160(15)30034-5

    Article  Google Scholar 

  • Blair G J, Lefroy R D B, Lisle L, 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7): 1459–1466. doi: 10.1071/AR9951459

    Article  Google Scholar 

  • Bockheim J G, Hinkel K M, Nelson F E, 2003. Predicting carbon storage in Tundra Soils of Arctic Alaska. Soil Science Society of America Journal, 67(3): 948–950. doi: 10.2136/sssaj2003.9480

    Article  Google Scholar 

  • Budge K, Leifeld J, Hiltbrunner E et al., 2011. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences, 8(7): 1911–1923. doi: 10.5194/bg-8-1911-2011

    Article  Google Scholar 

  • Chen Z M, Wang H Y, Liu X W et al., 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil and Tillage Research, 165: 121–127. doi: 10.1016/j.still.2016.07.018

    Article  Google Scholar 

  • Davidson E A, Janssens I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165–173. doi: 10.1038/nature04514

    Article  Google Scholar 

  • Eglin T, Ciais P, Piao S L et al., 2010. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B: Chemical and Physical Meteorology, 62(5): 700–718. doi: 10.1111/j.1600-0889.2010.00499.x

    Article  Google Scholar 

  • Ewing S A, Sanderman J, Baisden W T et al., 2006. Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. Journal of Geophysical Research, 111(G3): G03012. doi: 10.1029/2006JG000174

    Article  Google Scholar 

  • Fauci M F, Dick R P, 1994. Soil microbial dynamics: short-and long-term effects of inorganic and organic nitrogen. Soil Science Society of America Journal, 58(3): 801–806. doi: 10.2136/sssaj1994.03615995005800030023x

    Article  Google Scholar 

  • Feller C, Balesdent J, Nicolardot B et al., 2001. Approaching “functional” soil organic matter pools through particle-size fractionation: examples for tropical soils. In: Lal R, Kimble J M, Follett R F, et al. (eds.). Assessment Methods for Soil Carbon. Boca Raton, Florida: Lewis Publishers, 53–67.

    Google Scholar 

  • Francaviglia R, Renzi G, Ledda L et al., 2017. Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment, 599-600: 789–796. doi: 10.1016/j.scitotenv.2017.05.021

    Article  Google Scholar 

  • Gabarrón-Galeote M A, Trigalet S, Van Wesemael B, 2015. Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma, 249-250: 69–78. doi: 10.1016/j.geoderma.2015.03.007

    Article  Google Scholar 

  • Gabriel C E, Kellman L, 2014. Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil. Soil Biology and Biochemistry, 68: 373–384. doi: 10.1016/j.soilbio.2013.10.009

    Article  Google Scholar 

  • Gerke H H, Rieckh H, Sommer M, 2016. Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis. Soil and Tillage Research, 156: 230–244. doi: 10.1016/j.still.2015.09.003

    Article  Google Scholar 

  • Guidi C, Magid J, Rodeghiero M et al., 2014. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant and Soil, 385(1–2): 373–387. doi: 10.1007/s11104-014-2315-2

    Article  Google Scholar 

  • Guimarães D V, Gonzaga M I S, Da Silva T O et al., 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126: 177–182. doi: 10.1016/j.still.2012.07.010

    Article  Google Scholar 

  • Haynes R J, 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 85: 221–268. doi: 10.1016/S0065-2113(04)85005-3

    Article  Google Scholar 

  • Huang Z Q, Wan X H, He Z M et al., 2013. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biology and Biochemistry, 62: 68–75. doi: 10.1016/j.soilbio.2013.03.008

    Article  Google Scholar 

  • Huo Lili, Lv Xianguo, 2011. Effect of different reclamation patterns on soil organic carbon distribution of aggregates in the topsoil of the Calamagrostis angustifolia Wetland in Sanjiang Plain, China. China Environmental Science, 31(10): 1711–1717. (in Chinese)

    Google Scholar 

  • Huo L L, Chen Z K, Zou Y C et al., 2013. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering, 51: 287–295. doi: 10.1016/j.ecoleng.2012.12.020

    Article  Google Scholar 

  • Huo L L, Guo J W, Zou Y C et al., 2015. Effect of reclamation on microbial biomass and activity in peat mire soil around Xingkai Lake in northeast China. Fresenius Environmental Bulletin, 24(3B): 1098–1107

    Google Scholar 

  • Joergensen R G, 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biology and Biochemistry, 28(1): 25–31. doi: 10.1016/0038-0717(95)00102-6

    Article  Google Scholar 

  • Jones D L, Willett V B, 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5): 991–999. doi: 10.1016/j.soilbio.2005.08.012

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z H et al., 2010. Biogeochemistry of paddy soils. Geoderma, 157(1–2): 1–14. doi: 10.1016/j.geoderma.2010.03.009

    Article  Google Scholar 

  • Ladd J N, Oades J M, Amato M, 1981. Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biology and Biochemistry, 13(2): 119–126. doi: 10.1016/0038-0717(81)90007-9

    Article  Google Scholar 

  • Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2): 1–22. doi: 10.1016/j.geoderma.2004.01.032

    Article  Google Scholar 

  • Liao J D, Boutton T W, 2008. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology and Biochemistry, 40(5): 1207–1216. doi: 10.1016/j.soilbio.2007.12.018

    Article  Google Scholar 

  • Loginow W, Wisniewski W, Gonet S S et al., 1987. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20(1): 47–52.

    Google Scholar 

  • McLauchlan K K, Hobbie S E, 2004. Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 68(5): 1616–1625. doi: 10.2136/sssaj2004.1616

    Article  Google Scholar 

  • Müller M, Alewell C, Hagedorn F, 2009. Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biology and Biochemistry, 41(6): 1066–1074. doi: 10.1016/j.soilbio.2009.02.007

    Article  Google Scholar 

  • Nahrawi H, Husni M H A, Radziah O, 2012. Labile carbon and carbon management index in peat planted with various crops. Communications in Soil Science and Plant Analysis, 43(12): 1647–1657. doi: 10.1080/00103624.2012.681736

    Article  Google Scholar 

  • Nie M, Pendalla E, Bellb C et al., 2014. Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biology and Biochemistry, 68: 357–365. doi: 10.1016/j.soilbio.2013.10.012

    Article  Google Scholar 

  • Nyamadzawo G, Nyamangara J, Nyamugafata P et al., 2009. Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil and Tillage Research, 102(1): 151–157. doi: 10.1016/j.still.2008.08.007

    Article  Google Scholar 

  • Pabst H, Kühnel A, Kuzyakova Y, 2013. Effect of land-use and elevation on microbial biomass and water extractable carbon in soils of Mt. Kilimanjaro ecosystems. Applied Soil Ecology, 67: 10–19. doi: 10.1016/j.apsoil.2013.02.006

    Article  Google Scholar 

  • Plante A F, Fernández J M, Haddix M L et al., 2011. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biology and Biochemistry, 43(5): 1051–1058. doi: 10.1016/j.soilbio.2011.01.024

    Article  Google Scholar 

  • Poeplau C, Don A, 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192: 189–201. doi: 10.1016/j.geoderma.2012.08.003

    Article  Google Scholar 

  • Powlson D S, Prookes P C, Christensen B T, 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19(2): 159–164. doi: 10.1016/0038-0717(87)90076-9

    Article  Google Scholar 

  • Puissant J, Mills R T E, Robroek B J M et al., 2017. Climate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grassland. Biogeochemistry, 132(1–2): 123–139. doi: 10.1007/s10533-016-0291-8

    Article  Google Scholar 

  • Qualls R G, Richardson C J, 2003. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry, 62(2): 197–229. doi: 10.1023/A:1021150503664

    Article  Google Scholar 

  • Raiesi F, Beheshti A, 2014. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75: 63–70. doi: 10.1016/j.apsoil.2013.10.012

    Article  Google Scholar 

  • Schlesinger W H, Bernhardt E S, 2013. Chapter 5-The biosphere: the carbon cycle of terrestrial ecosystems. In: Schlesinger W H and Bernhardt E S (eds.). Biogeochemistry (Third Edition). Boston: Academic Press, 135–172.

    Chapter  Google Scholar 

  • Sheng H, Zhou P, Zhang Y Z et al., 2015. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry, 88: 148–157. doi: 10.1016/j.soilbio.2015.05.015

    Article  Google Scholar 

  • Six J, Conant R T, Paul E A et al., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241(2): 155–176. doi: 10.1023/A:1016125726789

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S et al., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1): 7–31. doi: 10.1016/j.still.2004.03.008

    Article  Google Scholar 

  • Song Changchun, Wang Yiyong, Yan Baixing et al., 2004. The changes of the soil hydrothermal condition and the dynamics of C, N after the mire tillage. Environmental Science, 25(3): 150–154. (in Chinese)

    Google Scholar 

  • Trumbore S E, Bonani G, Wolfli W, 1990. The Rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter. In: Bouwman A F (ed.). Soils and the Greenhouse Effect. New York: John Wiley and Sons, 405–414.

    Google Scholar 

  • Vicente-Vicente J L, Gómez-Muñoz B, Hinojosa-Centeno M B et al., 2017. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agriculture, Ecosystems & Environment, 245: 135–146. doi: 10.1016/j.agee.2017.05.020

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K et al., 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 39(9): 2183–2207. doi: 10.1016/j.soilbio.2007.03.007

    Article  Google Scholar 

  • Walkley A, Black I A, 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29–38. doi: 10.1097/00010694-193401000-00003

    Article  Google Scholar 

  • Wickings K, Grandy A S, Reed S C et al., 2012. The origin of litter chemical complexity during decomposition. Ecology Letters, 15(10): 1180–1188. doi: 10.1111/j.1461-0248.2012.01837.x

    Article  Google Scholar 

  • Wickland K P, Neff J C, Aiken G R, 2007. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems, 10(8): 1323–1340. doi: 10.1007/s10021-007-9101-4

    Article  Google Scholar 

  • Wu X, Li Z S., Fu B J et al., 2014. Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 73: 395–403. doi: 10.1016/j.ecoleng.2014.09.077

    Article  Google Scholar 

  • Xu M, Li X L, Cai X B et al., 2017. Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Scientific Reports, 7: 3067. doi: 10.1038/s41598-017-03248-0

    Article  Google Scholar 

  • Xu X F, Thornton P E, Post W M, 2013. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22(6): 737–749. doi: 10.1111/geb.12029

    Article  Google Scholar 

  • Yu P J, Li Q, Jia H T et al., 2014. Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen plain. Agronomy Journal, 106(5): 1574–1582. doi: 10.2134/agronj14.0113

    Article  Google Scholar 

  • Yu P J, Liu S W, Han K X et al., 2017. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agriculture, Ecosystems & Environment, 245: 83–91. doi: 10.1016/j.agee.2017.05.013

    Article  Google Scholar 

  • Zhang C B, Wang J, Liu W L et al., 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36(1): 62–68. doi: 10.1016/j.ecoleng.2009.09.010

    Article  Google Scholar 

  • Zhao S C, Li K J, Zhou W et al., 2016. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 216: 82–88. doi: 10.1016/j.agee.2015.09.028

    Article  Google Scholar 

Download references

Acknowledgement

We appreciate the assistance in the field work of this study by the Xingkai Lake Wetland Experimental Station, Chinese Academy of Sciences and its staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi An.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41501102, 41471081, 41601104), Science and Technology Innovation Project of China Academy of Agricultural Sciences (No. 2017-cxgc-lyj), Science & Technology Project of Industry (No. 201403014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, L., Zou, Y., Lyu, X. et al. Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China. Chin. Geogr. Sci. 28, 325–336 (2018). https://doi.org/10.1007/s11769-018-0939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0939-5

Keywords

Navigation