Skip to main content
Log in

An algorithm for dictionary generation in sparse representation

  • Published:
Journal of Electronics (China)

Abstract

The K-COD (K-Complete Orthogonal Decomposition) algorithm for generating adaptive dictionary for signals sparse representation in the framework of K-means clustering is proposed in this paper, in which rank one approximation for components assembling signals based on COD and K-means clustering based on chaotic random search are well utilized. The results of synthetic test and empirical experiment for the real data show that the proposed algorithm outperforms recently reported alternatives: K-Singular Value Decomposition (K-SVD) algorithm and Method of Optimal Directions (MOD) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(2006)1, 6–18.

    Article  MathSciNet  Google Scholar 

  2. J. Chen and X. M. Huo. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(2006)12, 4634–4643.

    Article  Google Scholar 

  3. M. Akcakaya and V. Tarokh. A frame construction and a universal distortion bound for sparse representations. IEEE Transactions on Signal Processing, 56(2008)6, 2443–2450.

    Article  MathSciNet  Google Scholar 

  4. S. G. Mallat and Z. F. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(1993)12, 3397–3415.

    Article  MATH  Google Scholar 

  5. J. A. Tropp. Greed is Good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(2004)10, 2231–2242.

    Article  MathSciNet  Google Scholar 

  6. M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Computation, 12 (2000), 337–365.

    Article  Google Scholar 

  7. D. L. Donoho and X. M. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(2001)7, 2845–2862.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Akcakaya and V. Tarokh. Performance of sparse representation algorithms using randomly generated frames. IEEE Signal Processing Letters, 14(2007)11, 777–780.

    Article  Google Scholar 

  9. K. Engan, S. O. Aase, and J. H. Husey. Method of optimal directions for frame design. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Phoenix, AZ, USA, Mar. 15–19, 1999, Vol.5, 2443–2446.

  10. R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(2005)3, 645–678.

    Article  Google Scholar 

  11. D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1994)1, 3–14.

    Article  Google Scholar 

  12. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(1983)4598, 671–680.

    Article  MathSciNet  Google Scholar 

  13. M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(1995), 573–595.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. K. Delgado, J. F. Murray, B. D. Rao, K. Engan, and T. Lee. Dictionary learning algorithms for sparse representation. Neural Computation, 15(2003), 349–396.

    MATH  Google Scholar 

  15. K. Engan, S. O. Aase, and J. H. Husey. Multi-frame compression: theory and design. Signal Processing, 80(2000), 2121–2140.

    Article  MATH  Google Scholar 

  16. M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing, 54(2006)11, 4311–4322.

    Article  Google Scholar 

  17. M. Aharon and M. Elad. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(2006)12, 3736–3745.

    Article  MathSciNet  Google Scholar 

  18. J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(2007)12, 4655–4666.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuchao Feng.

Additional information

Supported by the National Natural Science Foundation of China under Grants (No. 60872123 & U0835001), and by Natural Science Foundation of Guangdong Province, China (No. 07006496).

Communication author: Feng Jiuchao, born in 1964, male, Professor.

About this article

Cite this article

Xie, Z., Feng, J. An algorithm for dictionary generation in sparse representation. J. Electron.(China) 26, 836–841 (2009). https://doi.org/10.1007/s11767-008-0077-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-008-0077-9

Key words

CLC index

Navigation