Abstract
Machine learning and augmented reality form very important computational tools in biomedicine, neurology and stomatology as well. The present paper is devoted to a novel method of spectroscopic detection of caries lesions that changes the optical properties of the affected tissue. This method of the diffuse reflectance spectroscopy is used in many biomedical areas even though the analysis of associated data suffers from a large variance of acquired signals’ shape and their properties. The proposed methodology of measured spectra analysis is based upon general methods of signal feature evaluation and the use of computational intelligence for their classification. The paper compares properties of dental feature clusters for the set of 578 tissues with different levels of their changes. Classification results of selected features by the support vector machine, Bayesian method, k-nearest neighbour method and neural network enable to distinguish the healthy tissue and caries lesions with the accuracy from 94.1 to 98.4% and the cross-validation error lower than 8.3%. These results suggest how the augmented reality and general mathematical signal processing methods can be beneficial for diagnostic purposes in dental research and possibly in the clinical practice as well.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bachmann, L., Zezell, D., Ribeiro, A., Laércio, G., Ito, A.: Fluorescence spectroscopy of biological tissues—a review. Appl. Spectrosc. Rev. 41, 575–590 (2006)
Buchwald, T., Buchwald, Z.: Assessment of the Raman spectroscopy effectiveness in determining the early changes in human enamel caused by artificial caries. Analyst 144, 1409–1419 (2019)
Dong, J., Han, Z., Zhao, Y., Wang, W., Procházka, A., Chambers, J.: Sparse analysis model based multiplicative noise removal with enhanced regularizations. Sig. Process. 137, 160–176 (2017)
Erden, F., Velipasalar, S., Alkar, A.Z., Cetin, A.E.: Sensors in assisted living: a survey of signal and image processing methods. IEEE Signal Process. Mag. 33(2), 36–44 (2016)
Fushiki, T.: Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 21(2), 137–146 (2011)
Gardner, C.: Transmission versus reflectance spectroscopy for quantitation. J. Biomed. Opt. 23(1), 018001 (2018)
Gráfová, L., Kašparová, M., Kakawand, S., Procházka, A., Dostálová, T.: Study of edge detection task in dental panoramic X-ray images. Dentomaxillofac. Radiol. 42, 20120391:1–20120391:12 (2013)
Graye, M., Markowitz, K., Strickland, M., Guzy, G., Burke, M., Houpt, M.: In vitro evaluation of the Spectra early caries detection system. J. Biomed. Opt. 23(1), 1–6 (2012)
Gugnani, N., Pandit, I., Srivastava, N., Gupta, M., Sharma, M.: International caries detection and assessment system (ICDAS): a new concept. Int. J. Clin. Pediatr. Dentistry 4(2), 93–100 (2011)
Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)
Hendriks, B., Balthasar, A., Lucassen, G., van der Voort, M., Mueller, M., Pully, V., Bydlon, T., Reich, C., van Keersop, A., Kortsmit, J., Langhout, G., van Geffen, G.: Nerve detection with optical spectroscopy for regional anaesthesia procedures. J. Transl. Med. 13, 380:1–380:11 (2015)
Hoštálková, E., Vyšata, O., Procházka, A.: Multidimensional image de-noising using Haar transform. In: Proceedings of the 15th International Conference on Digital Signal Processing, pp. 175–179 (2007)
Hsiao, Y., Tien, G., Chuang, M., Hsu, F., Hsieh, H., Sung, K.: Development of a movable diffuse reflectance spectroscopy system for clinical study of esophageal precancer. In: Clinical and Biomedical Spectroscopy and Imaging IV, p. 1 (2015)
Kašparová, M., Halamová, S., Dostálová, T., Procházka, A.: Intra-oral 3D scanning for the digital evaluation of dental arch parameters. MDPI Appl. Sci. 8, 1838:1–1838:9 (2018)
Kašparová, M., Procházka, A., Gráfová, L., Yadollahi, M., Vyšata, O., Dostálová, T.: Evaluation of dental morphometrics during the orthodontic treatment. Biomed. Eng. Online 14, 68:1–68:13 (2014)
Lamont, R., Egland, P.: Chapter 52: Dental caries. In: Tang, Y.W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J. (eds.) Molecular Medical Microbiology, 2nd edn, pp. 945–955. Academic Press, Cambridge (2015)
Markowitz, K., Stenvall, R., Graye, M.: The effect of distance and tooth structure on laser fluorescence caries detection. J. Biomed. Opt. 37(2), 150–160 (2012)
Meglinski, I. (ed.): Biophotonics for Medical Applications. Elsevier Ltd., Amsterdam (2015)
Mjor, I., Pindborg, J.: Histology of the Human Tooth. Scandinavian University Books (1973)
Pernkopf, F.: Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 7, 333–342 (2004)
Pitts, N., Ekstrand, K.: International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)—methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral Epidemiol. 41, e41–e52 (2013)
Pitts, N., Zero, D., Marsh, P., Ekstrand, K., Weintraub, J., Ramos-Gomez, F., Tagami, J., Twetman, S., Tsakos, G., Ismail, A.: International Caries Detection and Assessment System (ICDAS): a new concept. Nat. Rev. Dis. Primers 3, 17030:1–17030:16 (2017)
Procházka, A., Dostálová, T., Kašparová, M., Vyšata, O., Charvátová, H., Sanei, S., Marík, V.: Augmented reality implementations in stomatology. MDPI Appl. Sci. 9, 2929:1–2929:13 (2019)
Procházka, A., Vyšata, O., Ťupa, O., Mareš, J., Vališ, M.: Discrimination of axonal neuropathy using sensitivity and specificity statistical measures. Neural Comput. Appl. 25(6), 1349–1358 (2014)
Ruohonen, M., Palo, K., Alander, J.: Spectroscopic detection of caries lesions. Hindawi J. Med. Eng. 13, 161090:1–161090:9 (2013)
Sadeghi, J., de Angelis, M., Patelli, E.: Efficient training of interval Neural Networks for imprecise training data. Neural Netw. 118, 338–351 (2019)
Salsone, S., Taylor, A., Gomez, J., Pretty, I., Ellwood, R., Dickinson, M., Lombardo, G., Zakian, C.: Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification. J. Biomed. Opt. 17(7), 076009 (2013)
Schwarz, R., Gao, W., Daye, D., Williams, M., Richards-Kortum, R., Gillenwater, A.: Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt. 47(6), 825–834 (2008)
Spliethoff, J.: Spectral tissue sensing for guidance and monitoring in oncological procedures. Ph.D. Thesis, Universiteit Twente (2015)
Spliethoff, J., Prevoo, W., Meier, M., De Jong, J., Klomp, H., Evers, D., Sterenborg, H., Lucassen, G., Hendriks, B., Ruers, T.: Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study. Clin. Cancer Res. 22(2), 357–365 (2016)
Tetschke, F., Kirsten, F., Golde, J., Walther, J., Galli, R., Koch, E., Hannig, A.: Application of optical and spectroscopic technologies for the characterization of carious lesions in vitro. Biomed. Tech. 65(3), 519–527 (2018)
Tong, W., Hong, H., Fang, H., Xie, Q., Perkins, R.: Decision forest: combining the predictions of multiple independent decision tree models. J. Chem. Inf. Comput. Sci. 43, 525–531 (2003)
Unnikrishnan, N., Jaysree, V., Jose, A.: Optical method for the detection of dental caries in oral cavity. Int. J. Sci. Res. Publ. 4(9), 1–4 (2014)
Wan, Q., Wang, T., Zhang, K.: Biomedical optical spectroscopy for the early diagnosis of gastrointestinal neoplasms. Tumor Biol. 2017, 1–12 (2017)
Yu, B., Shah, A., Nagarajan, W., Ferris, D.: Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed. Opt. Express 5(3), 675–689 (2014)
Zakian, C., Pretty, I., Ellwood, R.: Near-infrared hyperspectral imaging of teeth for dental caries detection. J. Biomed. Opt. 14(6), 064047 (2009)
Zhang, P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. 30(4), 451–462 (2000)
Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018)
Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–77 (1993)
Acknowledgements
This research was supported by grant projects of the Ministry of Health CR (FN HK 00179906) and the Charles University at Prague, Czech Republic (PROGRES Q40), as well as by the project PERSONMED – Centre for the Development of Personalized Medicine in Age-Related Diseases, Reg. No. CZ.02.1.010.00.017 0480007441, co-financed by the European Regional Development Fund (ERDF) and the governmental budget of the Czech Republic. All procedures were approved by the local ethics committee as stipulated by the Helsinki Declaration.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Charvát, J., Procházka, A., Fričl, M. et al. Diffuse reflectance spectroscopy in dental caries detection and classification. SIViP 14, 1063–1070 (2020). https://doi.org/10.1007/s11760-020-01640-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-020-01640-4