Skip to main content
Log in

Image focus measure based on polynomial coefficients and spectral radius

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new measure of image focus based on the statistical properties of polynomial coefficients and spectral radius is proposed. Spectral radius captures the dominant features and represents the important dynamics of an image. It is shown that the proposed focus measure is monotonic and unimodal with respect to the degree of defocusation, noise and blurring effects. Moreover, it is sufficiently invariant to contrast changes occur due to the variations in intensities of illumination. The noise studies show that the proposed focus measure is robust under the different noisy and blurring conditions. The performance of proposed focus measure is gauged by comparing with the existing image focus measures. Experimental results using synthetic as well as real-time images with known and unknown distortion conditions show the wider working capability and higher prediction consistency of the proposed focus measure. Moreover, the performance of the proposed approach is validated with most popular five image quality databases: TID2008, LIVE, CSIQ, IVC and Cornell-A57. Experimentation on the databases shows that the proposed metric provides the comparatively higher correlation with ideal mean observer score than the existing metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bardsley, J.M., Nagy, J.G.: Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging. SIAM J. Matrix Anal. Appl. 27(4), 1184–1197 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wang, D., Ding, X., Zhang, T., Kuang, H.: A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications. Opt. Laser Technol. 45(1), 190–197 (2013)

    Article  Google Scholar 

  3. Lee, I., Mahmood, M.T., Choi, T.S.: Adaptive window selection for 3D shape recovery from image focus. Opt. Laser Technol. 45(1), 21–31 (2013)

    Article  Google Scholar 

  4. Huang, W., Jing, Z.: Evaluation of focus measures in multi-focus mage fusion. Pattern Recognit. Lett. 28(4), 493–500 (2007)

    Article  Google Scholar 

  5. Wee, C.Y., Parmesran, R.: Measure of image sharpness using eigenvalues. In: Proceedings of 9th international conference signal process, pp. 840–843 (2008)

  6. Jin, L., Ponomarenko, N., Egiazarian K.: Novel image quality metric based on similarity. In: Proceedings of 10th international symposium signal, circuit system, pp. 1–4 (2011)

  7. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  8. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  9. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  10. Kautsky, J., Flusser, J., Zitová, B., Simberová, S.: A new wavelet-based measure of image focus. Pattern Recognit. Lett. 23(14), 1785–1794 (2002)

    Article  MATH  Google Scholar 

  11. Lin, J., Zhang, C., Shi, Q.: Estimating the amount of defocus through a wavelet transform approach. Pattern Recognit. Lett. 25(4), 407–411 (2004)

    Article  Google Scholar 

  12. Mukundan, R., Ong, S., Lee, P.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, Y., Zhang, Y., Wen, C.: A new focus measure method using moments. Image Vis. Comput. 18(2), 959–965 (2000)

    Article  Google Scholar 

  14. Subbarao, M., Choi, T., Nikzad, A.: Focusing techniques. Opt. Eng. 32(8), 2824–2836 (1993)

    Article  Google Scholar 

  15. Krotkov, E.: Focusing. Int. J. Comput. Vis. 1(3), 223–237 (1987)

  16. Yap, P.T., Raveendran, P.: Focus measure based on Chebyshev moments. Proc. IEE Vis. Image Signal Process. 151(2), 128–136 (2004)

    Article  Google Scholar 

  17. Wee, C.Y., Parmesran, R.: Image sharpness measure using eigenvalues. Inf. Sci. 177(12), 2533–2552 (2007)

    Article  MATH  Google Scholar 

  18. Gaidhane, V.H., Hote, Y.V., Singh, V.: An efficient approach for face recognition based on common eigenvalues. Pattern Recognit. 47(5), 1869–1879 (2014)

    Article  Google Scholar 

  19. Hote, Y.V., Gupta, J.R.P., Choudhury, D.R.: A simple approach for stability margin of discrete systems. J. Control Theory Appl. 9(4), 567–570 (2011)

    Article  MathSciNet  Google Scholar 

  20. Chen, M.Q., Li, X.: An estimation of the spectral radius of a product of block matrices. Linear Algebra Appl. 379(9), 267–275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, T.Z., Ran, R.S.: A simple estimation for the spectral radius of (block) H-matrices. J. Comput. Appl. Math. 177(2), 455–459 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zheng, B., Wang, L.: Spectral radius and infinity norms of matrices. J. Math. Anal. Appl. 346(1), 243–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. http://sipi.usc.edu/services/database/Database.html

  24. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

  25. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarin, K., Carli, M., Battisti, F.: TID2008- a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(4), 30–45 (2009)

    Google Scholar 

  26. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 6–21 (2010)

    Google Scholar 

  27. Callet, P.L., Autrusseau, F.: Subjective quality assessment IRCCyN/IVC Database (2005)

  28. http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html/

  29. Damera-Venkata, N., Kite, T., Geisler, W., Evans, B., Bovik, A.: Image quality assessment based on a degradation model. IEEE Trans. Image Process 9(4), 636–650 (2000)

    Article  Google Scholar 

  30. Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., Lukin, V.: Metrics performance comparison for color image database. In: Fourth international workshop on video processing and quality metrics for consumer electronics, vol. 27 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilas H. Gaidhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidhane, V.H., Hote, Y.V. & Singh, V. Image focus measure based on polynomial coefficients and spectral radius. SIViP 9 (Suppl 1), 203–211 (2015). https://doi.org/10.1007/s11760-015-0775-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0775-3

Keywords

Navigation