Skip to main content

Advertisement

Log in

A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Support vector machines (SVMs) have been widely used in many pattern recognition problems. Generally, the performance of SVM classifiers is affected by the selection of the kernel parameters. However, SVM does not offer the mechanism for proper setting of their control parameters. The objective of this research is to optimize the parameters without degrading the SVM classification accuracy in diagnosis of neuromuscular disorders. An evolutionary approach for designing an SVM-based classifier (ESVM) by optimization of automatic parameter tuning using genetic algorithm is proposed. To illustrate and evaluate the efficiency of ESVM, a typical application to EMG signals classification using normal, myopathic, and neurogenic datasets is adopted. In the proposed method, the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT), and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. It is shown that ESVM can obtain a high accuracy of 97 % using tenfold cross-validation for the EMG datasets. ESVM is developed as an efficient tool, so that various SVMs can be used conveniently as the core of ESVM for diagnosis of neuromuscular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Subasi, A.: Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. 12, 2188–2198 (2012)

    Article  Google Scholar 

  2. Subasi, A.: Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput. Biol. Med. 42, 806–815 (2012)

    Article  Google Scholar 

  3. Hassoun, M., Wang, C., Spitzer, A.: NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis. IEEE Trans. Biomed. Eng. 41(11), 1053–1061 (1994)

    Article  Google Scholar 

  4. Schizas, C.N., Pattichis, C.N., Schofield, I., Fawcett, P., Middleton, L.: Artificial neural nets in computer-aided macro motor unit potential classification. IEEE Eng. Med. Biol. Mag. 9(3), 31–38 (1990)

    Article  Google Scholar 

  5. Schizas, C.N., Pattichis, C., Middleton, L.: Neural networks, genetic algorithms and the k-means algorithm: in search of data classification. Int. Workshop Comb. Genet. Algorithms Neural Netw. 1, 201–222 (1992)

    Google Scholar 

  6. Pattichis, C.S., Schizas, C.N., Mittleton, L.T.: Neural network models in EMG diagnosis. IEEE Trans. Biomed. Eng. 42, 486–496 (1995)

    Article  Google Scholar 

  7. Pattichis, C.S., Elia, A.G.: Autoregressive and cepstral analyses of motor unit action potentials. Med. Eng. Phys. 21, 405–419 (1999)

    Article  Google Scholar 

  8. Pattichis, C.S., Pattichis, M.S.: Time-scale analysis of motor unit action potentials. IEEE Trans. Biomed. Eng. 46(11), 1320–1329 (1999)

    Article  Google Scholar 

  9. Begg, R., Daniel, T., Lai, H., Palaniswami, M.: Computational Intelligence in Biomedical Engineering. Taylor & Francis Group, LLC., CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 (2008)

  10. Subasi, A., Yilmaz, M., Ozcalik, H.R.: Classification of EMG signals using wavelet neural network. J. Neurosci. Meth. 156, 360–367 (2006)

    Article  Google Scholar 

  11. Subasi, A., Kiymik, M.K.: Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Sys. 34(4), 777–785 (2010)

    Article  Google Scholar 

  12. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  14. Lu, C., Van Gestel, T., Suykens, J.A.K., Van Huffel, S., Vergote, I., Timmerman, D.: Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif. Intell. Med. 28, 281–306 (2003)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Pal, S.K.: Classification and Learning Using Genetic Algorithms. Springer, Berlin (2007)

  16. Mierswa, I.: Evolutionary learning with kernels: a generic solution for large margin problems. In: Proceedings of the GECCO’06, pp. 1553–1560. Washington, USA (2006)

  17. Ho, S.Y., Shu, L.S., Chen, J.H.: Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans. Evolut. Comput. 8(6), 522–541 (2004)

    Article  Google Scholar 

  18. Huang, H.-L., Chang, F.-L.: ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data. BioSystems 90, 516–528 (2007)

    Article  Google Scholar 

  19. Daubechies, I., Mallat, S., Willsky, A.S.: Introduction to the special issue on wavelet transforms and multiresolution signal analysis. IEEE Trans. Inf. Theory 38, 529–532 (1992)

    Google Scholar 

  20. Vetterli, M., Herley, C.: Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 40, 2207–2232 (1992)

    Article  MATH  Google Scholar 

  21. Kronland-Martinet, R., Morlet, J., Grossmann, A.: Analysis of sound patterns through wavelet transforms. Int. J. Pattern Rec. Artif. Intell. 1, 273–302 (1987)

    Article  Google Scholar 

  22. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Proc. Mag. 11, 14–38 (1991)

    Article  Google Scholar 

  23. Hlawatsch, F., Bourdeaux-Bartels, G.F.: Linear and quadratic time-frequency signal representations. IEEE Signal Proc. Mag. 4, 21–67 (1992)

    Article  Google Scholar 

  24. Thakor, N.V., Gramatikov, B., Sherman, D.: Wavelet (time-scale) analysis in biomedical signal processing. In: Bronzino, J.D. (ed.) The Biomedical Engineering Handbook. CRC Press LLC, Boca Raton (2000)

    Google Scholar 

  25. Akay, M.: Wavelet applications in medicine. IEEE Spectr. 34(5), 50–56 (1997)

    Article  Google Scholar 

  26. Subasi, A.: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 28, 701–711 (2005)

    Article  Google Scholar 

  27. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007)

    Article  Google Scholar 

  28. Kandaswamy, A., Kumar, C.S., Ramanathan, R.P., Jayaraman, S., Malmurugan, N.: Neural classification of lung sounds using wavelet coefficients. Comput. Biol. Med. 34(6), 523–537 (2004)

    Article  Google Scholar 

  29. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  30. van der Heijden, F., Duin, R.P.W., de Ridder, D., Tax, D.M.J.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. Wiley, West Sussex (2004)

    Book  Google Scholar 

  31. Kecman, V.: Support vector machines: an introduction. In: Wang, L (ed.) Support Vector Machines: Theory and Applications, Springer, Berlin (2005)

  32. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  33. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  34. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  35. Lorena, A.C., de Carvalho, A.C.P.L.F.: Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71, 3326–3334 (2008)

    Article  Google Scholar 

  36. Zhang, R., McAllister, G., Scotney, B., McClean, S., Houston, G.: Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed. 10(3), 458–467 (2006)

    Article  Google Scholar 

  37. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. http://www.csie.ntu.edu.twcjlinpapersguideguide.pdf (2003)

Download references

Acknowledgments

The author thanks to Dr. Mustafa Yilmaz at University of Gaziantep, Neurology Department for providing the EMG data utilized in this research. The author also thanks to the anonymous reviewers for their comments and contribution.This research has been supported by International Burch University (IBU Project no: IBU2010-PRD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamit Subasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subasi, A. A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines. SIViP 9, 399–408 (2015). https://doi.org/10.1007/s11760-013-0480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0480-z

Keywords

Navigation