Skip to main content
Log in

Satellite imagery based adaptive background models and shadow suppression

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Accurate segmentation of foreground objects in video scenes is critical for assuring reliable performance of vision systems for object tracking and situational awareness in outdoor scenes. Most existing techniques for background modeling and shadow suppression require that a number of parameters be “hand-tuned” based on environmental conditions. This paper presents two contributions to overcome such limitations. First, we develop and demonstrate a satellite imagery based approach for selecting appropriate background and shadow models. It is shown that the illumination conditions (i.e. cloud cover) of a scene can be reliably inferred from visible satellite images in the local region of the camera. The second contribution presented in the paper is introduction and evaluation of a Hybrid Cone-Cylinder Codebook (HC3) model which combines an adaptive efficient background model with HSV-color space shadow suppression into a single coherent framework. The structure of the HC3 model allows for seamless fusion of the satellite data. We are thereby able to exploit the fact that, for example, shadows are more pronounced on sunny days than cloudy days, allowing for more sensitive detection. The paper presents a set of experiments using day long sequences of videos from an operational surveillance system testbed. Results of these experimental analyses quantitatively illustrate the benefits of using satellite imagery to inform and adaptively adjust background and shadow modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amnuaykanchanasin, P., Thongkamwitoon, T., Srisawaiwilai, N., Aramvith, S., Chalidabhongse, T.H.: Adaptive parametric statistical background subtraction for video segmentation. In:Proceedings of the Third ACM Int’l Workshop on Video Surveillance & Sensor Networks, pp.63–66, New York. ACM Press (2005)

  2. Baba, M., Asada, N.: Shadow removal from a real picture. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications, pp.1–1, New York. ACM Press (2003)

  3. Cavallaro A., Salvador E. and Ebrahimi T. (2005). Shadow-aware object-based video process. IEE Visi. Image Signal Process. 152(4): 14–22

    Google Scholar 

  4. Chandrasekhar, S.: Radiative Transfer., 2nd edn. Dover Publications (1960)

  5. Colwell, R. (ed.) : Manual of Remote Sensing, chap. 5, pp.165–230. American Society of Photogrammetry, Falls Church 2nd edn, (1983)

  6. Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving shadow suppression in moving object detection with HSV color information. In: IEEE Int’l Conf. Intelligent Transportation Systems, pp.334–339 (2001)

  7. Doshi, A., Trivedi, M.M.: Hybrid cone-cylinder codebook model for foreground detection with shadow and highlight suppression. In: IEE Int’l Conf. on Advanced Video and Signal based Surveillance. Australia (2006)

  8. Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: European Conf. on Computer Vision, pp.751–767 (2000)

  9. Han, H., Wang, Z., Liu, J., Li, Z., Li, B., Han, Z.: Adaptive background modeling with shadow suppression. In: Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, vol. 1, pp.720–724 (2003)

  10. Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for realtime robust background subtraction and shadow detection. In: Proceedings of IEEE Frame Rate Workshop, pp.1–19 (1999)

  11. Joseph J.H., Wiscombe W. and Weinman J. (1976). The delta-eddington approximation for radiative flux transfer. J. Atmos. Sci. 33(12): 2452–2459

    Article  Google Scholar 

  12. Kim K., Chalidabhonse T.H., Harwood D. and Davis L. (2005). Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3): 167–256

    Article  Google Scholar 

  13. Lee D.-S., Hull J.J. and Erol B. (2003). A bayesian framework for gaussian mixture background modeling. IEEE Int. Conf. Image Process. 3: 973–976

    Google Scholar 

  14. Liou K.-N.: Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. Oxford University Press (1992)

  15. Liou K.-N. and Wittman G.D. (1979). Parameterization of the radiative properties of clouds. J. Atmos. Sci. 36(7): 1261–1273

    Article  Google Scholar 

  16. Lluis, J., Miralles, X., Bastidas, O.: Reliable real-time foreground detection for video surveillance applications. In: Proceedings of the Third ACM Int’l Workshop on Video Surveillance & Sensor Networks, pp.59–62, New York. ACM Press (2005)

  17. Meador W. and Weaver W. (1980). Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci. 37(3): 630–643

    Article  Google Scholar 

  18. Mikic, I., Kogut, G., Cosman, P., Trivedi, M.M.: Moving shadow and object detection in traffic scenes. Int. Conf. on Pattern Recogn. (2000)

  19. NASA: Clouds and radiation. Earth observatory: http://www.earthobservatory.nasa.gov/Library/Clouds/

  20. GOES I-M Databook rev. 1, Space Systems-Loral. NASA, http://www.rsd.gsfc.nasa.gov/goes/text/goes.databook.html. Chapter on Imager, pp. 20–38 (2001)

  21. NOAA: Current GOES-10 1 km VIS Satellite Imagery Centered on San Diego. http://www.sat.wrh.noaa.gov/satellite/1km/Sandiego/VIS1SAN.GIF

  22. NOAA: Geostationary Satellite Server. http://www.goes.noaa.gov/

  23. Piccardi M. (2004). Background subtraction techniques: a review. IEEE Int. Conf. Systems Man Cybern. 4: 3099–3104

    Google Scholar 

  24. Porikli, F., Thornton, J.: Shadow flow: A recursive method to learn moving cast shadows. In: IEEE International Conference on Computer Vision (ICCV) (2005)

  25. Porikli, F., Tuzel O.: Bayesian background modeling for foreground detection. In:Proceedings of the Third ACM Int’l Workshop on Video Surveillance & Sensor Networks, pp.55–58, New York. ACM Press (2005)

  26. Prati, A., Mikic, I., Cucchiara, R., Trivedi, M. M.: Analysis and detetcion of shadows in video streams: a comparative evaluation. In: IEEE CVPR Workshop on Empirical Evaluation Methods in Computer Vision (2001)

  27. Prati A., Mikic I., Trivedi M. and Cucchiara R. (2003). Detecting moving shadows: Algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intelli. 25: 918–923

    Article  Google Scholar 

  28. Rossow W.B. (1989). Measuring cloud properties from space: a review. J. Climate 2(3): 201–213

    Article  Google Scholar 

  29. Stauder J., Mech R. and Ostermann J. (1999). Detection of moving cast shadows for object segmentation. IEEE Trans. Multimedia 1(1): 65–76

    Article  Google Scholar 

  30. Stauffer C. and Grimson W.L. (1999). Adaptive background mixture models for real-time tracking. CVPR99 II: 246–252

    Google Scholar 

  31. Tattersall, S., Dawson-Howee, K.: Adaptive shadow identification through automatic parameter estimation in video sequences. In: Irish Machine Vision and Image Processing Conference (IMVIP 2003), pp.57–64 (2003)

  32. Toyama, K., Krumm, J., Brumitt, B. Meyers, B.: Wallflower: principles and practice of background maintenance. In:ICCV (1), pp.255–261 (1999)

  33. Trivedi, M.M.: Analysis of high-resolution aerial images. In: Kasturi, R., Trivedi, M.M. (eds.) Image Analysis Applications, pp.281–305. Marcel Dekker (1990)

  34. Trivedi M.M., Gandhi T.L. and Huang K.S. (2005). Distributed interactive video arrays for event capture and enhanced situational awareness. IEEE Intell. Systems 20(5): 58–66

    Article  Google Scholar 

  35. Wren C.R., Azarbayejani A., Darrell T. and Pentland A. (1997). Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7): 780–785

    Article  Google Scholar 

  36. Zhu X. and Arking A. (1994). Comparison of daily averaged reflection, transmission and absorption for selected radiative flux transfer approximations. J. Atmos. Sci. 51(24): 3580–3592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Doshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doshi, A., Trivedi, M.M. Satellite imagery based adaptive background models and shadow suppression. SIViP 1, 119–132 (2007). https://doi.org/10.1007/s11760-007-0013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0013-8

Keywords

Navigation