Skip to main content
Log in

Water distribution networks design under uncertainty

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

Water distribution networks are important systems that provide citizens with an essential public service which is crucial for the normal development of most basic activities of life. Despite many water distribution network problems have been extensively investigated in the literature, the presence of uncertainty in the data has often been neglected. This paper studies the challenging problem of designing an isolation system for water distribution networks under different failure scenarios. To solve the problem, three heuristic methods are presented and analyzed on a real case study taken from the literature. Numerical results show the merits of the suggested techniques for solving the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aimms 3.12 (2012). Paragon decision technology B.V., The Netherlands. ILOG CPLEX 12.1 Users Manual ILOG Inc., CPLEX Division, Mountain View, USA

  • Albareda-Sambola M, Alonso-Ayuso A, Escudero LF, Fernandez E, Pizarro C (2013) On solving the multi-period location-assignment problem under uncertainty. Comput Oper Res 40:2878–2892

    Article  Google Scholar 

  • Angelelli E, Mansini R, Speranza MG (2012) Kernel search: a new heuristic framework for portfolio selection. Comput Optim Appl 51(1):345–361

    Article  Google Scholar 

  • Babayan AV, Kapelan Z, Savi DA, Walters GA (2005) Least cost design of robust water distribution networks under demand uncertainty. J Water Resour Plann Manag ASCE 131(5):375–382

    Article  Google Scholar 

  • Balas E, Jeroslow R (1972) Canonical cuts on the unit hypercube. SIAM J Appl Math 23(1):61–69

    Article  Google Scholar 

  • Basupi I, Kapelan Z (2014) Evaluating flexibility in water distribution system design under future demand uncertainty. J Infrastruct Syst 21(2):1–52

    Google Scholar 

  • Basupi I, Kapelan Z (2015) Flexible water distribution system design under future demand uncertainty. J Water Resour Plann Manage 141(4):04014067

    Article  Google Scholar 

  • Beraldi P, Bruni ME (2009) A probabilistic model applied to emergency service vehicle location. Eur J Oper Res 196:323–331

    Article  Google Scholar 

  • Beraldi P, Bruni ME, Conforti D (2009) The stochastic trim-loss problem. Eur J Oper Res 197:42–49

    Article  Google Scholar 

  • Beraldi P, Violi D, Scordino N, Sorrentino N (2011) Short-term electricity procurement: a rolling horizon stochastic programming approach. Appl Math Model 35(8):3980–3990

    Article  Google Scholar 

  • Beraldi P, Bruni ME, Violi A (2012) Capital rationing problems under uncertainty and risk. Comput Optim Appl 51(3):1375–1396

    Article  Google Scholar 

  • Birge JR, Louveaux FV (1997) Introduction to stochastic programming. Springer series on operations research. Springer, New York

    Google Scholar 

  • Bruni ME, Beraldi P, Laganá D (2013) The express heuristic for probabilistically constrained integer problems. J Heuristics 19(3):423–441

    Article  Google Scholar 

  • Bruni ME, Beraldi P, Conforti D (2014) A stochastic programming approach for the strategic valve locations problem in a water distribution system. Procedia Soc Behav Sci 108(8):129–38

    Article  Google Scholar 

  • Bruni ME, Beraldi P, Conforti D (2015) A stochastic programming approach for operating theatre scheduling under uncertainty. IMA J Manag Math 26(1):99–119

    Article  Google Scholar 

  • Caroe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Oper Res Lett 24:37–45

    Article  Google Scholar 

  • Cattafi M, Gavanelli M, Nonato M, Alvisi S, Franchini M (2011) Optimal placement of valves in a water distribution network with CLP(FD). Theory Pract Logic Program 11(4–5):731–747

    Article  Google Scholar 

  • Creaco E, Franchini M, Alvisi S (2010) Optimal placement of isolation valves in water distribution systems based on valve cost and weighted average demand shortfall. J Water Resour Plann Manag 24(15):4317–4338

    Article  Google Scholar 

  • Fadaee MJ, Tabatabaei R (2010) Estimation of failure probability in water pipes network using statistical model. World Appl Sci J 11(9):1157–1163

    Google Scholar 

  • Farmani R, Butler D (2013) Towards more resilient and adaptable water distribution systems under future demand uncertainty. Water Sci Technol Water Supply 13(6):1495–1506

    Article  Google Scholar 

  • Fischetti M, Lodi A (2003) Local branching. Math Program 98:23–47

    Article  Google Scholar 

  • Gavanelli M, Nonato M, Peano A, Alvisi S, Franchini M (2012) An ASP approach for the valves positioning optimization in a water distribution system. In: Lisi F (ed) 9th Italian convention on computational logic (CILC 2012), Rome, Italy, vol 857 of CEUR Workshop Proceedings, pp 134–148

  • Germanopoulos G (1985) A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models. Civ Eng Syst 2:171–179

    Article  Google Scholar 

  • Germanopoulos G, Jowitt PW (1989) Leakage reduction by excessive pressure minimization in a water supply network. Proc Inst Civ Eng Part 2(87):195–214

    Google Scholar 

  • Giustolisi O, Savic DA, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626–635

    Article  Google Scholar 

  • Giustolisi O, Kapelan Z, Savic DA (2008) An algorithm for automatic detection of topological changes in water distribution networks. J Hydraul Eng 134(4):435–446

    Article  Google Scholar 

  • Giustolisi O, Savic DA (2010) Identification of segments and optimal isolation valve system design in water distribution networks. Urban Water J 7:1–15

    Article  Google Scholar 

  • Giustolisi O, Laucelli D (2011) Water distribution network pressure-driven analysis using EGGA. J Water Resour Plann Manag 137(6):117–127

    Article  Google Scholar 

  • Hansen P, Mladenovic N, Perez JAM (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175:367–407

    Article  Google Scholar 

  • Kapelan Z, Babayan AV, Savi DA, Walters GA, Khu ST (2004) Two new approaches for the stochastic least cost design of water distribution systems. Water Sci Technol Water Supply 4(5–6):355–363

    Google Scholar 

  • Kapelan Z, Savi DA, Walters GA, Babayan AV (2005) Risk and robustness based solutions to a multiobjective water distribution system rehabilitation problem under uncertainty. Water Sci Technol IWA 53(1):61–75

    Article  Google Scholar 

  • Khatri K, Vairavamoorthy K (2011) A new approach of decision making under uncertainty for selecting a robust strategy: a case of water pipes failure. In: Ayyub BM (ed) Vulnerability, uncertainty, and risk: analysis, modeling, and management. American Society of Civil Engineers, pp 953–962

  • Le Gat Y, Eisenbeis P (2000) Using maintenance records to forecast failures in water network. Urban Water 2(3):173–181

    Article  Google Scholar 

  • Maggioni F, Kaut M, Bertazzi L (2009) Stochastic optimization models for a single-sink transportation problem. Comput Manag Sci Spec Issue Comput Optim Under Uncertain 6(2):251–267

    Google Scholar 

  • Marques J, Cunha MC, Sousa J, Savi D (2012) Robust optimization methodologies for water supply systems design. Drink Water Eng Sci Discuss 5(1):173–192

    Article  Google Scholar 

  • Nannicini G, Belotti P (2012) Rounding-based heuristics for nonconvex MINLPs. Mathe Program Comput 4(1):1–31

    Article  Google Scholar 

  • Peano A, Nonato M, Gavanelli M, Alvisi S, Franchini M (2012) A bilevel mixed integer linear programming model for valves location in water distribution systems. In: 3rd student conference on operational research. OpenAccess series in informatics (OASIcs, (ed) Ravizza S, Holborn P, vol 22. Schloss Dagstuhleibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 103–112

  • Poulakis Z, Valougeorgis D, Papadimitriou C (2003) Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probab Eng Mech 18:315327

    Article  Google Scholar 

  • Shinozuka M, Liang J (1999) On-line damage identification of water delivery systems. Proceedings of Engng Mech Conf

  • Todini E, Pilati S (1988) A gradient method for the solution of looped pipe networks. In: Coulbeck B, Orr CH (eds) Computer applications in water supply. Research Studies Press Ltd. Taunton, pp 1–20

  • Vespucci MT, Maggioni F, Bertocchi MI, Innorta M (2010) A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann Oper Res 193(1):91–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Beraldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruni, M.E., Beraldi, P. & Conforti, D. Water distribution networks design under uncertainty. TOP 25, 111–126 (2017). https://doi.org/10.1007/s11750-016-0425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-016-0425-0

Keywords

Mathematics Subject Classification

Navigation