Skip to main content
Log in

Towards the identification of heat induction in chip removing processes via an optimal control approach

A simplified stationary test case for drilling processes

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper presents a linear-quadratic regulator (LQR) approach for solving inverse heat conduction problems (IHCPs) arising in production processes like chip removing or drilling. The inaccessibility of the processed area does not allow the measuring of the induced temperature. Hence the reconstruction of the heat source based on given measurements at accessible regions becomes necessary. Therefore, a short insight into the standard treatment of an IHCP and the related LQR design is provided. The main challenge in applying LQR control to the IHCP is to solve the differential Riccati equation. Here, a model order reduction approach is used in order to reduce the system dimension. The numerical results will show the accuracy of the approach for a problem based on data given by practical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banks HT, Ito K (1991) A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J Control Optim 29(3):499–515

    Article  MathSciNet  MATH  Google Scholar 

  2. Banks HT, Kunisch K (1984) The linear regulator problem for parabolic systems. SIAM J Control Optim 22:684–698

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner P (1999) Computational methods for linear-quadratic optimization. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II No. 58:21–56

  4. Benner P, Kürschner P, Saak J (2013) Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer Algorithms 62(2):225–251. doi:10.1007/s11075-012-9569-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner P, Kürschner P, Saak J (2014) Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron Trans Numer Anal 43:142–162

    MathSciNet  MATH  Google Scholar 

  6. Benner P, Li JR, Penzl T (2008) Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer Linear Algebra Appl 15(9):755–777

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner P, Mena H (2012) Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations. Preprint MPIMD/12-13, MPI Magdeburg Preprint. http://www.mpi-magdeburg.mpg.de/preprints/

  8. Benner P, Mena H (2013) Rosenbrock methods for solving Riccati differential equations. IEEE Trans Autom Control 58(11):2950–2957

    Article  MathSciNet  Google Scholar 

  9. Bonesky D, Dahlke S, Maass P, Raasch T (2010) Adaptive wavelets methods and sparsity reconstruction for inverse heat conduction problems. Adv Comput Math 33(4):385–411

    Article  MathSciNet  MATH  Google Scholar 

  10. Enns DF (1984) Model reduction with balanced realizations: an error bound and a frequency weighted generalization. 23rd IEEE Conf Decis Control 23:127–132

    Article  Google Scholar 

  11. Grossmann C, Roos HG, Stynes M (2007) Numerical treatment of partial differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Hairer E, Wanner G (2002) Solving ordinary differential equations II: stiff and algebraic problems, 2nd edn. Springer, Berlin, Heidelberg

    Google Scholar 

  13. Kindermann S, Navasca C (2006) Optimal control as a regularization method for ill-posed problems. J Inverse Ill-Posed Probl 14:685–703

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamm PK (1996) Future-sequential regularization methods for ill-posed Volterra equations. J Math Anal Appl, 469–494

  15. Lang N, Mena H, Saak J (2014) An \(LDL^T\) factorization based ADI algorithm for solving large scale differential matrix equations. Proc Appl Math Mech 14(1):827–828

    Article  Google Scholar 

  16. Li JR, White J (2002) Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl 24(1):260–280

    Article  MathSciNet  Google Scholar 

  17. Locatelli A (2001) Optimal control: an introduction. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  18. Louis AK (1989) Inverse und schlecht gestellte Probleme. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  19. Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control AC–26(1):17–32

    Article  Google Scholar 

  20. Neugebauer R, Drossel WG, Ihlenfeldt S, Richter C (2012) Thermal interactions between the process and workpiece. Procedia CIRP, 63–66. doi:10.1016/j.procir.2012.10.012

  21. Penzl T (2000) A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J Sci Comput 21(4):1401–1418

    Article  MathSciNet  Google Scholar 

  22. Penzl T (2000) Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst Control Lett 40:139–144

    Article  MathSciNet  MATH  Google Scholar 

  23. Penzl T (2006) Algorithms for model reduction of large dynamical systems. Linear Algebra Appl 415(2–3):322–343 (Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schindler S, Zimmermann M, Aurich JC, Steinmann P (2014) Finite element model to calculate the thermal expansions of the tool and the workpiece in dry turning. Procedia CIRP 14:535–540

    Article  Google Scholar 

  25. Schindler S, Zimmermann M, Aurich JC, Steinmann P (2014) Thermo-elastic deformations of the workpiece when dry turning aluminum alloys: a finite element model to predict thermal effects in the workpiece. CIRP J Manuf Sci Technol 7:233–245. doi:10.1016/j.cirpj.2014.04.006

    Article  Google Scholar 

  26. Schweinoch M, Joliet R, Kersting P (2014) Predicting thermal loading in nc milling processes. Prod Eng. doi:10.1007/s11740-014-0598-z

  27. Strauss WA (2008) Partial differential equations: an introduction. Brown University, Whiley

    MATH  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center/Transregio 96 Thermo-Energetic Design of Machine Tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, N., Saak, J., Benner, P. et al. Towards the identification of heat induction in chip removing processes via an optimal control approach. Prod. Eng. Res. Devel. 9, 343–349 (2015). https://doi.org/10.1007/s11740-015-0608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0608-9

Keywords

Navigation