Skip to main content
Log in

Thermal effects in orthogonal cutting

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper describes the procedure for creating and verifying a thermomechanical FEM model of orthogonal cutting processes as well as the results obtained with this model. To verify the model, the temperature was measured in the secondary shear zone and at the exterior surface of the chip, which was analytically estimated as well and compared with the experimental values. In addition, the resultant forces and the chip compression ratio were determined as further characteristic machining variables. The course of the obtained results is explained using the correlation between the capacity produced by the heat source and its retention period in the temperature range under consideration. Finally, the values for temperature, resultant forces and chip compression ratio as attained by experiment are compared with those calculated with the FEM cutting model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoppe S (2003) Experimental and numerical analysis of chip formation in metal cutting. Dissertation, RWTH Aachen

  2. Söhner J (2003) Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Element-Methode. Dissertation, Universität Karlsruhe

  3. Xie L (2004) Estimation of Two-dimension Tool Wear Based on Finite Element Method. Dissertation, Universität Karlsruhe

  4. Mackerle L (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44

    Article  Google Scholar 

  5. Marusich TD (2005) Trends in machining modeling. Third Wave AdvantEdge International Users’ Conference, Dearborn, USA, 1–25, May 4–5

  6. Özel T, Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high speed flat and milling. Int J Machine Tools Manuf 40:713–738

    Google Scholar 

  7. Pabst R (2008) Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung. Dissertation, Universität Karlsruhe, 250 S

  8. Fang G, Zeng P (2005) Three-dimensional thermo-elastic-plastic coupled FEM simulations for metal oblique cutting processes. J Mater Process Technol 168:42–48

    Article  Google Scholar 

  9. Grzesik W (2006) Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int J Mach Tools Manuf 46:651–658

    Article  Google Scholar 

  10. Jen T-C, Anagonye AU (2001) An improved transient model of tool temperatures in metal cutting. Trans ASME 123:30–37

    Google Scholar 

  11. Warnecke G, Oh J-D (2002) A new thermo-viscoplastic material model for finite-element-analysis of the chip formation process. Annals of the CIRP 51(1):79–82

    Google Scholar 

  12. Majumdar P, Jayaramachandran R, Ganesan S (2005) Finite element analysis of temperature rise in metal cutting process. Appl Therm Eng 25:2152–2168

    Article  Google Scholar 

  13. Potdar YK, Zehnder AT (2003) Measurements and simulations of temperature and deformation fields in transient metal cutting. J Manuf Sci Eng 125:645–655

    Article  Google Scholar 

  14. Jen T-C, Anagonye AU (2001) An improved transient model of tool temperatures in metal cutting. J Manuf Sci Eng 123:30–37

    Article  Google Scholar 

  15. Cereti E, Filice L, Umbrello D, Mican F (2007) ALE simalation of orthogonal cutting: a new approach to model heat transfer phenoma at the tool-chip interface. Annals CIRP 56(1):69–72

    Google Scholar 

  16. Zaghbani I, Bouzid W, Sai K (2005) A thermo-mechanical coupled F.E.M model for orthogonal cutting. 8-th CIRP International Workshop on Modeling of Machining Operations, May 10–11, Chemnitz, Germany

  17. Davies MA, Ueda T, M’Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. Annals CIRP 56(2):581–604

    Google Scholar 

  18. Müller B (2004) Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen Schnittgeschwindigkeiten. Dissertation, RWTH Aachen

  19. Kalhöfer E, Kranzen J (2010) Untersuchung der Zerspantemperaturen beim Bohren mittels Thermografie. horizonte, Nr. 35:32–34

  20. Mayr J, Jedrzejewski J, Donmez MA (2008) A other: Thermal Error Research. CIRP Annals Manuf Technol 1–26

  21. Nau M (2004) Elektrische temperaturmessung mit thermoelementen und Widerstandsthermometern. JUMO GmbH, Fulda

    Google Scholar 

  22. Heisel U, Krivoruchko DV, Zaloha VA, Storchak M (2007) Cause analysis of errors in fe prediction orthogonal cutting performances. Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, -Calabria, pp 141–148

  23. Heisel U, Kryvoruchko DV, Zaloha VA, Storchak M, Stehle T (2009) Thermomechanische Wechselwirkungen beim Zerspanen. ZWF Nr. 4:S263–S272

  24. Kragelskiy IV (1978) Friction, wear and lubrication. Mashinistroenie, Moscow, 1:400

  25. Fundamental of Cutting: Textbook/N. P. Mazur et al (2010). New World, Lemberg, p 422

  26. Reznikov AN (1981) Thermal physics of cutting. Moscow, Machinebuilding. p 279

  27. Oxley PLB (1989) Mechanics of Machining, an Analytical Approach to Assessing Machinability. Ellis Horwood, Chichester p 242

  28. Krivoruchko DV (2010) Fundamental of cutting modeling with numerical methods. Thesis Dr. Sc. tech., Kharkiv, p 40

  29. Bobrov BF (1975) Fundamental of metal cutting theory. Machinebuildung, Moscow, p 344

  30. Heisel U, Storchak M, Eberhard P, Gaugele T (2011) Experimental studies for verification of thermal effects in cutting. Annals WGP Prod Eng 5(5):507–515

    Article  Google Scholar 

  31. Jaspers SPFC (1999) Metal cutting mechanics and material behaviour. Technische Universiteit Eindhoven, Eindhoven 173 p

    Google Scholar 

  32. Heisel U, Storchak M, Stehle T, Korotkih M (2010) Temperaturbestimmung in den Zerspanzonen. wt Werkstattstechnik online, Bd. 100, No. 5:365–370

Download references

Acknowledgments

The presented results were gained in the project HE 1656/146-1 “Modelling and Compensation of Thermic Processing Influence for Short Hole Drilling” within the priority programme SPP 1480 Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes” (CutSim), which was funded by the German Research Foundation (DFG). The authors would like to thank the DFG and all partners in this SPP for their support, which is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Storchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heisel, U., Storchak, M. & Krivoruchko, D. Thermal effects in orthogonal cutting. Prod. Eng. Res. Devel. 7, 203–211 (2013). https://doi.org/10.1007/s11740-013-0451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0451-9

Keywords

Navigation