Skip to main content
Log in

An exploratory look at NETosis in atherosclerosis

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Current evidence suggests the likelihood of a link between venous thromboembolism (VTE) and atherosclerosis, although they have been traditionally considered as different pathological entities. The contribution of neutrophils to human atherogenesis has been underestimated, if compared to their contribution established in VTE. This is due to the major importance attributed to macrophages in plaque destabilization. Nevertheless, the role of neutrophils in atherogenesis deserves increasing attention. In particular, neutrophil extracellular traps (NETs) are net-like chromatin fibres that are released from dying neutrophils. The death of neutrophils with NETs formation is called NETosis. During activation, neutrophils produce reactive oxygen species (ROS), through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The main function of NETs is trapping and killing pathogens. Nevertheless, NETs formation has been observed in various chronic inflammatory diseases, autoimmune diseases, vasculitis, lung diseases, cancer and VTE. Recent studies suggest that NETs formation might contribute also to atherosclerosis progression. New data report the presence of NETs in the luminal portion of human atherosclerotic vessels and coronary specimens obtained from patients after acute myocardial infarction. Programmed death mechanisms in atherosclerosis such as apoptosis, efferocytosis and also NETosis, share common features and triggers. If defective, they can lead the cells to a switch from programmed death to necrosis, resulting in the release of pro-atherogenic factors, accumulation of cell debris and progression of the disease. This review provides evidence on the emerging role of neutrophils focusing on NETosis and oxidative stress burden in orchestrating common mechanisms in atherosclerosis and thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MP:

Microparticles

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NE:

Neutrophil elastase

NETs:

Neutrophil extracellular traps

Nrf2:

Nuclear erythroid-related factor 2

ROS:

Reactive oxygen species

TF:

Tissue factor

VTE:

Venous thromboembolism

References

  1. Prandoni P, Bilora F, Marchiori A, Bernardi E, Petrobelli F, Lensing AWA, Prins MH, Girolami A (2003) An association between atherosclerosis and venous thrombosis. N Engl J Med 348:1435–1441

    Article  PubMed  Google Scholar 

  2. Prandoni P, Villalta S, Bagatela P, Rossi L, Marchiori A, Piccoli A, Bernardi E, Girolami A (1997) The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. Haematologica 82:423–428

    CAS  PubMed  Google Scholar 

  3. Schulman S, Lindmarker P, Holmstrom M (2006) Post-thrombotic syndrome, recurrence and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost 4:734–742

    Article  CAS  PubMed  Google Scholar 

  4. Hong C, Zhu F, Du D (2005) Coronary artery calcification and risk factors for atherosclerosis in patients with venous thromboembolism. Atherosclerosis 183:169–174

    Article  CAS  PubMed  Google Scholar 

  5. Lowe G (2008) Common risk factors for both arterial and venous thrombosis. Br J Haematol 5:488–495

    Article  Google Scholar 

  6. Reich LM, Folsom AM, Key NS, Boland LL, Heckbert RS, Rosamond WD, Cusham M (2006) Prospective study of subclinical atherosclerosis as a risk factor for venous thromboembolism. J Thromb Haemost 4:1909–1913

    Article  CAS  PubMed  Google Scholar 

  7. Van der Hagen PB, Folsom AR, Jenny NS, Heckbert RS, Rosamond WD, Cusham M (2006) Subclinical atherosclerosis and the risk of future venous thrombosis in the Cardiovascular Health Study. J Thromb Haemost 4:1903–1908

    Article  PubMed  Google Scholar 

  8. Prandoni P (2007) Venous thromboembolism and atherosclerosis: is there a link? J Thromb Haemost 5:270–275

    Article  CAS  PubMed  Google Scholar 

  9. Prandoni P (2009) Venous and arterial thrombosis: two aspects of the same disease? Clin Epidemiol 1:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brinkman V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  Google Scholar 

  11. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle-cells disease. Blood 12:3818–3827

    Article  Google Scholar 

  14. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps in humans. Biomolecules 5:702–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Almyroudis NG, Grimm MJ, Davidson BA, Rohm M, Urban CF, Segal BH (2013) NETosis and NADPH oxidase: at the intersection of host defence, inflammation, and injury. Front Immunol 4(45):1–7

    CAS  Google Scholar 

  16. Bianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J (2011) Restoration of anti-Aspergillus defence by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin. Immunol 127:1243–1252

    Article  CAS  PubMed  Google Scholar 

  17. Röhm M, Grimm MJ, D’Auria AC, Almyroudis NG, Segal BH, Urban CF (2014) NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 82:1766–1777

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hakkim A, Furnfohr BG, Amann K, Laube B, Abed UA, Brinkmann V (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122(16):2784–2794

    Article  CAS  PubMed  Google Scholar 

  20. Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer E-M, Krautgartner WD, Stoiber W, Belohradsky BH (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nature Med 16:1018–1023

    Article  CAS  PubMed  Google Scholar 

  21. Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, Piconese S, Parenza M, Guiducci C, Vitali C (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120:3007–3018

    Article  CAS  PubMed  Google Scholar 

  22. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 109:13076–13081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demers M, Wagner DD (2014) NETosis: a new factor in tumour progression and cancer-associated thrombosis. Semin Thromb Haemost 40(3):277–283

    Article  CAS  Google Scholar 

  25. The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) (2014) ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3080

    Article  Google Scholar 

  26. Virchow R (1856) Gesammalte abhandlungen zur wissenschaftlichen medtzin. Medinger Sohn & Co, Frankfurt, pp 219–732

    Google Scholar 

  27. Wakefield TW, Myers DD, Henke PK (2008) Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 28:387–391

    Article  CAS  PubMed  Google Scholar 

  28. Ali T, Humphries J, Burnand K, Sawyer B, Bursill C, Channon K, Greaves D, Rollins B, Charo IF, Smith A (2006) Monocyte recruitment in venous thrombus resolution. J Vasc Surg 43:601–608

    Article  PubMed  Google Scholar 

  29. Saha P, Humphries J, Modarai B, Mattock K, Waltham M, Evans C, Ahmad A, Patel A, Premaratmne S, Lyons O, Smith A (2011) Leukocytes and the natural history of deep vein thrombosis. Arterioscler ThrombVasc Biol 31:506–512

    Article  CAS  Google Scholar 

  30. Fuchs TA, Brill A, Deuerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584:3193–3197

    Article  CAS  PubMed  Google Scholar 

  32. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolberg AS, Aleman MM, Leiderman K, Machlus KR (2012) Pro-coagulant activity in haemostasis and thrombosis: Virchow’s triad revisited. Anaesth Analg 114:275–285

    Article  CAS  Google Scholar 

  34. Massberg S, Grahl L, von Bruehl ML (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine protease. Nat Med 16(8):887–896

    Article  CAS  PubMed  Google Scholar 

  35. von Bruhl ML, Stark K, Steinhart A (2012) Monocytes, neutrophils and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835

    Article  Google Scholar 

  36. Fuchs T, Bhandari A, Wagner DD (2011) Histones induce rapid and profound thrombocytopenia in mice. Blood 118:3708–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nomura S, Shimizu M (2015) Clinical significance of pro-coagulant micro-particles. J Intensive Care 3:1–2

    Article  Google Scholar 

  38. Wolberg AS, Monroe DM, Roberts HR, Hoffman MR (1999) Tissue factor de-encryption: ionophore treatment induces changes in tissue factor activity by phosphatidylserine-dependent and independent mechanisms. Blood Coagul Fibrinolysis 10:201–210

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L (2014) Micro-particles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin 35:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geddings GE (2013) Tumour-derived tissue factor–positive micro-particles and venous thrombosis in cancer patients. Blood 122(11):1873–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernal-Mizrachi L, Jimenez JJ, Pastor J, Mauro LM, Horstman LL (2003) High levels of circulating endothelial microparticles in patients with acute coronary syndrome. Am Heart J 145:962–970

    Article  PubMed  Google Scholar 

  42. Ogata N, Imaizumi M, Nomura S, Shouzu A, Arichi A, Matsuoka M (2005) Increased levels of platelet-derived micro-particles in patients with diabetic retinopathy. Diabetes Res Clin Pract 68:193–201

    Article  CAS  PubMed  Google Scholar 

  43. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG (2002) Type 1 and 2 diabetic patients display different patterns of cellular micro-particles. Diabetes 51:2840–2845

    Article  CAS  PubMed  Google Scholar 

  44. Koga H, Sugiyama K, Watanabe K, Fukushima H, Tanaka T (2005) Elevated levels of VE-cadherin- positive endothelial micro-particles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45:1622–1630

    Article  CAS  PubMed  Google Scholar 

  45. As Leroyer, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z (2007) Cellular origins and thrombogenic activity of micro-particles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777

    Article  Google Scholar 

  46. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676

    Article  CAS  PubMed  Google Scholar 

  47. Guimarães-Costa AB, Nascimento MT, Wardini AB, Pinto-da-Silva LH, Saraiva EM (2012) ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res 2012:92–97

    Article  Google Scholar 

  48. Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squarito D, Vaglio A, Taddei N, Abbate R, Emmi L, Goldoni M, Fiorillo C, Prisco D (2016) Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Beçhet disease. Circulation 133:302–311

    CAS  PubMed  Google Scholar 

  49. Darrah E, Andrade F (2013) NETs: the missing link between cell death and systemic autoimmune disease? Front Immunol 3(428):1–17

    Google Scholar 

  50. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190(3):1217–1226

    Article  CAS  PubMed  Google Scholar 

  51. Demers M, Wagner DD (2014) NETosis: a new factor in tumour progression and cancer-associated thrombosis. Semin Thromb Hemost 40(3):277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cedervall J, Olsson AK (2015) NETosis in cancer. Oncoscience 2(11):900–901

    PubMed  PubMed Central  Google Scholar 

  53. Pedersen F, Marwitz S, Holz O, Kirsten A, Bahmer T, Waschki B, Magnussen H, Rabe KF, Goldmann T, Uddin M, Watz H (2015) Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients. Respir Med 109(10):1360–1362

    Article  PubMed  Google Scholar 

  54. Grabcanovic-Musija F, Obermayer A, Stoiber W, Krautgartner WD, Steinbacher P, Winterberg N, Bathke AC, Klappacher M, Studnicka M (2015) Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 22(16):59

    Article  Google Scholar 

  55. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation and cancer: how are they linked? Free Rad Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lawlwss MW, O’Byrne KJ, Gray SG (2009) Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med 13:2800–2821

    Article  Google Scholar 

  57. Menegazzo L, Ciciliot S, Poncina N, Mazzucato M, Persano M, Bonora B, Albiero M, Vigili de Kreutzenberg S, Avogaro A, Fadini GP (2015) NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol 52(3):497–503

    Article  CAS  PubMed  Google Scholar 

  58. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21(7):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, Lopez-Villegas EO, Sanchez-Garcia FJ (2015) Metabolic requirements for neutrophil extracellular traps (NETs) formation. Immunology 145:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mozzini C, Garbin U, Stranieri C, Pasini A, Solani E, Tinelli IA, Cominacini L, Fratta Pasini AM (2015) Endoplasmic reticulum stress and Nrf2 repression in circulating cells of type 2 diabetic patients without the recommended glycemic goals. Free Radic Res 49(3):244–252

    Article  CAS  PubMed  Google Scholar 

  61. Li P, Li M, Lindbeerg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A (2016) A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis 26(1):1–8

    Article  CAS  PubMed  Google Scholar 

  63. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  64. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30:1282–1292

    Article  CAS  PubMed  Google Scholar 

  65. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16:285–292

    Article  CAS  PubMed  Google Scholar 

  66. Massberg S, Grahl L, von Bruehl ML (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–896

    Article  CAS  PubMed  Google Scholar 

  67. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchennko A, Gallant M, Martinod K, Cate H, Hofstra L, Crijins HJ, Wagner DD, Kietselaer BLJH (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a pro-thrombotic state. Arterioscler Thromb Vasc Biol 33(8):2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Megens RT, Vijayan S, Lievens D, Döring Y, van Zandvoort MA, Grommes J, Weber C, Soehnlein O (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107:597–598

    Article  CAS  PubMed  Google Scholar 

  69. De Boer OJ, Li X, Teeling P, Mackaay C, Ploegmakers HJ, van der Loos CM, Daemen MJ, de Winter RJ, van der Wal AC (2013) Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 109:290–297

    Article  PubMed  Google Scholar 

  70. Mangold A, Alias S, Schertz T, Hofbuer T, Jakowitsch J, Panzenbock A, Simon D, Laimer D, Bangert C, Kammerlander A, Mascherbauer J, Winter MP, Distelmaier K, Adibrecht C, Preissner KT, Lang IM (2015) Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 116(7):1182–1192

    Article  CAS  PubMed  Google Scholar 

  71. Stakos DA, Kambas K, Kostantinidis T, Mitroulis I, Apostolidou E, Arelaki S, Tsironidou V, Giatromanolaki A, Skendros P, Kostantinides S, Ritis S (2015) Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 36(22):1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nahrendorf M, Swirski FK (2015) Neutrophil-macrophage communication in inflammation and atherosclerosis. Science 349(6245):237–238

    Article  CAS  PubMed  Google Scholar 

  73. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349(6245):316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farrera C, Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191:2647–2656

    Article  CAS  PubMed  Google Scholar 

  75. Nakazawa D, Shida H, Kusunoki Y, Miyoshi A, Nishio S, Tomaru U, Atsumi T, Ishizu A (2016) The responses of macrophages in interaction with neutrophils that undergo NETosis. J Autoimmun 67:19–28

    Article  CAS  PubMed  Google Scholar 

  76. Doring Y, Weber C, Soehnlein O (2013) Footprints of neutrophil extracellular traps as predictors of cardiovascular risk. Arterioscler Thromb Vasc Biol 33:1735–1736

    Article  PubMed  Google Scholar 

  77. Borissoff JI, Spronk HMH, Cate H (2011) The haemostatic system as a modulator of atherosclerosis. N Engl J Med 364:1746–1760

    Article  CAS  PubMed  Google Scholar 

  78. Cominacini L, Garbin U, Mozzini C, Stranieri C, Pasini A, Solani E, Tinelli IA, Pasini AF (2015) The atherosclerotic plaque vulnerability: focus on the roles of oxidative and endoplasmic reticulum stress in orchestrating macrophage apoptosis and the formation of the necrotic core. Curr Med Chem 22(13):1565–1572

    Article  CAS  PubMed  Google Scholar 

  79. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  80. Tabas I, Williams KJ, Boren J (2007) Sub-endothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  CAS  PubMed  Google Scholar 

  81. Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 45:736–746

    Article  CAS  PubMed  Google Scholar 

  82. Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10:36–46

    Article  CAS  PubMed  Google Scholar 

  83. Schrijvers DM, De Meyer GR, Herman AG, Martinet W (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73:470–480

    Article  CAS  PubMed  Google Scholar 

  84. Van Vrè E, Ait-Oufella H, Tedgui A, Mallat Z (2012) Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol 32:887–893

    Article  PubMed  Google Scholar 

  85. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 7:839–850

    Article  Google Scholar 

  86. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–1233

    Article  PubMed  Google Scholar 

  87. Zhou J, Lhotak S, Hilditch BA, Austin RC (2005) Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111:1814–1821

    Article  CAS  PubMed  Google Scholar 

  88. Cullinan SB, Diehl J (2004) A PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117

    Article  CAS  PubMed  Google Scholar 

  89. Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38:1092–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  91. Drechsler M, Döring Y, Megens RT, Soehnlein O (2011) Neutrophilic granulocytes–promiscuous accelerators of atherosclerosis. Thromb Haemost 106:839–848

    Article  CAS  PubMed  Google Scholar 

  92. Soehnlein O (2012) Multiple roles for neutrophils in atherosclerosis. Circ Res 110:875–888

    Article  CAS  PubMed  Google Scholar 

  93. Doring Y, Drechsler M, Soehnlein O, Weber C (2015) Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 35:288–295

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Mozzini.

Ethics declarations

Conflict of interests

None.

Ethical approval

The study was conducted in accordance with the ethical standards laid down in the Helsinki Declaration of 1975 and its late amendments. The local ethics committee approved the study.

Human and animal rights statement

No human nor animal data have been collected in this paper.

Informed consent

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozzini, C., Garbin, U., Fratta Pasini, A. et al. An exploratory look at NETosis in atherosclerosis. Intern Emerg Med 12, 13–22 (2017). https://doi.org/10.1007/s11739-016-1543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-016-1543-2

Keywords

Navigation