Skip to main content
Log in

Accumulation of metallothionein transcripts in response to iron, copper and zinc: Metallothionein and metal-chelate reductase

  • Air And Soil Pollution
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

It has been proposed that plant metallothionein (MT) sequesters excess copper, and possibly zinc, thereby preventing adverse metal-protein interactions. These metals can accumulate either gratuitously in response to other nutritional deficiencies or in plants grown in either copper- or zinc-enriched medium. Data are presented which confirm that in pea roots grown in low available iron there is increased (i) copper accumulation, (ii) MT transcript abundance, (iii) ferric-chelate reductase activity and (iv) cupric-chelate reductase activity. It is also shown that in roots grown in iron supplemented medium MT transcripts accumulate in response to elevated exogenous zinc. However, contrary to expectations, depletion of exogenous copper below normal micronutrient levels also confers an increase in the abundance of MT transcripts.

The hypothesis that the products of plant metallothionein genes could act as copper chaperones is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCDS:

Na2,9-dimethyl-4,7-diphenyl-1,10-bathophenanthrolinedisulfonic acid

BPDS:

bathophenanthrolinedisulfonic acid

EDDHA:

N, N′-ethylenebis[2-(2-hydroxyphenyl)glycine]

PsMT:

Pisum sativum metallothionein genes

References

  • Buchanan-Wollaston V. 1994. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus — identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol., 105: 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Coupe S. A., Taylor J. E., Roberts J. A. 1995. Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. leaflets. Planta, 197: 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Evans I. M., Gatehouse L. N., Gatehouse J. A., Robinson N. J., Croy R. R. D. 1990. A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett., 262: 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Evans K. M., Gatehouse J. A., Lindsay W. P., Shi J., Tommey A. M., Robinson N. J. 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function. Plant Mol. Biol., 20: 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg A.P., Vogelstein B. 1983. A technique for radiolabelling DNA restriction fragments to a high specific activity. Anal. Biochem., 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Fordham-Skelton A.P., Lilley C., Urwin P. E., Robinson N.J. 1997. GUS expression in Arabidopsis directed by 5′ regions of the pea metallothionein-like gene PsMTA. Plant Mol. Biol., 34: 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Grusak M. A., Welch R. M., Kochian L. V. 1990a. Does iron deficiency in Pisum sativum enhance the activity of the root plasmalemma iron transport protein? Plant Physiol., 94: 1353–1357.

    CAS  Google Scholar 

  • Grusak M. A., Welch R. M., Kochian L. V. 1990b. Physiological characterization of a single-gene mutant of Pisum sativum exhibiting excess iron accumulation. I. Root iron reduction and iron uptake. Plant Physiol., 93: 976–981.

    CAS  Google Scholar 

  • Hassett R., Cosman D. J. 1995. Evidence for Cu (II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem., 270: 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh H-M., Liu W-K., Huang P. C. 1995. A novel stress-inducible metallothionein-like gene from rice. Plant Mol. Biol., 28: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Kille P., Winge D. R., Harwood J. L., Kay J. 1991. A plant metallothionein produced in E. coli. FEBS Lett., 295: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Logemann J., Schell J., Willmitzer L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem., 163: 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Murphy A., Taiz L. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol., 109: 945–954.

    Article  PubMed  CAS  Google Scholar 

  • Okumura N., Nishizawa N-K., Umehara Y., Mori S. 1991. An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol. Biol., 17: 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Okumura N., Nishizawa N-K., Umehara Y., Ohata T., Mori S. 1992. Iron deficiency specific cDNA (Ids1) with two homologous cysteine rich mt domains from the roots of barley. J. Plant Nutr., 15: 2157–2172.

    CAS  Google Scholar 

  • Robinson N. J., Tommey A. M., Kuske C., Jackson P. J. 1993. Plant metallothioneins. Biochem. J., 295: 1–10.

    PubMed  CAS  Google Scholar 

  • Robinson N. J., Wilson J. R., Turner J. S. 1996. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein deficient Synechococcus PCC 7942: Putative role for MT2 in Zn2+-metabolism. Plant Mol. Biol., 30: 1169–1179.

    Article  PubMed  CAS  Google Scholar 

  • Romera F. J., Alcantara E. 1994. Iron-deficiency stress response in cucumber (Cucumis sativus L.) roots. A possible role for ethylene? Plant Physiol., 105: 1133–1138.

    PubMed  CAS  Google Scholar 

  • Romera F. J., Welch R. M., Norvell W. A., Schaefer S. C. 1996a. Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of strategy I species. BioMetals, 9: 45–50.

    CAS  Google Scholar 

  • Romera F. J., Welch R. M., Norvell W. A., Schaefer S. C., Kochian L. V. 1996b. Ethylene involvement in the over-expression of Fe(III)-chelate reductase by roots of E107 pea [Pisum sativum L. (brz, brz)] and chloronerva tomato (Lycopersicon esculentum L.) mutant genotypes. BioMetals, 9: 38–44.

    CAS  Google Scholar 

  • Snowden K. C., Richards K. D., Gardner R. C. 1995. Aluminium-induced genes: Induction by toxic metals, low calcium, and wounding and patterns of expression in roots tips. Plant Physiol., 107: 341–348.

    PubMed  CAS  Google Scholar 

  • Tommey A. M., Shi J., Lindsay W. P., Urwin P. E., Robinson N. J. 1991. Expression of the pea gene PsMTA in E. coli. FEBS Lett., 292: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Welch R. M., LaRue T. A. 1990. Physiological characteristics of Fe accumulation in the ‘bronze’ mutant of Pisum sativum L., cv. ‘Sparkle’ E107 (brz brz). Plant Physiol., 93: 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Welch R. M., Norvell W. A., Schaefer S. C., Shaff J. E., Kochian L. V. 1993. Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta, 190: 555–561.

    Article  CAS  Google Scholar 

  • Zhou J., Goldsbrough P. B. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 6: 875–884.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fordham-Skelton, A.P., Wilson, J.R., Groom, Q. et al. Accumulation of metallothionein transcripts in response to iron, copper and zinc: Metallothionein and metal-chelate reductase. Acta Physiol Plant 19, 451–457 (1997). https://doi.org/10.1007/s11738-997-0041-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-997-0041-6

Key words

Navigation