Skip to main content
Log in

Identification of thioredoxin genes and analysis of their expression under abiotic stresses in Medicago truncatula

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx) is a ubiquitous heat-stable protein that acts as an electron donor in many reduction reactions and is expressed in all organisms. In this study, the Trxs were searched from the whole genome of Medicago truncatula. As a result, 46 MtTrx genes were found and grouped into four groups by phylogenetic analysis. Chromosomal location and synteny analyses have suggested that both fragmental and tandem duplication contribute to MtTrx gene expansion. Tissue expression analysis has shown that several MtTrx genes may play vital functions in specific tissues, e.g., MtTrx30, MtTrx33 and MtTrx39. Moreover, the expression profiles of MtTrx genes under stresses revealed that 21, 27, and 29 MtTrxs were regulated by cold, drought and salt, respectively, and 11 of these genes responded to all stresses mentioned above (MtTrx3, 13, 17, 18, 22, 24, 25, 31, 32, 33, and 39). Combined with the results of promoter analysis, multiple MtTrx genes were deduced to participate in abiotic stress responses. Results from this study will inspire the future research on functional analysis of MtTrx genes, especially their roles in response to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkhalfioui F, Renard M, Frendo P, Keichinger C, Meyer Y, Gelhaye E, Hirasawa M, Knaff DB, Ritzenthaler C, Montrichard F (2008) A novel type of thioredoxin dedicated to symbiosis in legumes. Plant Physiol 148:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ancín M, Larraya L, Florez-Sarasa I, Bénard C, Fernández-San Millán A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I (2021) Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. J Exp Bot 72:4949–4964

    Article  PubMed  PubMed Central  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schürmann P, Droux M, Buchanan BB (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. PNAS 101:2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP (2015) A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. Plant, Cell Environ 38:299–314

    Article  CAS  Google Scholar 

  • Chae HB, Moon JC, Shin MR, Chi YH, Jung YJ, Lee SY, Nawkara GM, Jung HS, Hyun JK, Kim WY, Kang CH, Yun D-J, Lee KO, Lee SY (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol Plant 6:323–336

    Article  CAS  PubMed  Google Scholar 

  • Courteille A, Vesa S, Sanz-Barrio R, Cazalé AC, Becuwe-Linka N, Farran I, Havaux M, Rey P, Rumeau D (2013) Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol 161:508–520

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca-pereira P, Daloso DM, Gago J, de Oliveira Silva FM, Condori-Apfata JA, Florez-Sarasa I, Tohge T, Reichheld JP, Nunes-Nesi A, Fernie AR, Araújo WL (2019) The mitochondrial thioredoxin system contributes to the metabolic responses under drought episodes in Arabidopsis. Plant Cell Physiol 601:213–229

    Article  Google Scholar 

  • Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci 112:E1392–E1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Dios B-López J, Serrato AJ, Olmedilla A, Chueca A, Sahrawy M (2007) Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiol 145:946–960

    Article  Google Scholar 

  • Elasad M, Ahmad A, Wang H, Ma L, Yu S, Wei H (2020) Overexpression of CDSP32 (GhTRX134) cotton gene enhances drought, salt, and oxidative stress tolerance in Arabidopsis. Plants 9:1388

    Article  CAS  PubMed Central  Google Scholar 

  • Fernández-Trijueque J, Barajas-López JD, Chueca A, Cazalis R, Sahrawy M, Serrato AJ (2012) Plastid thioredoxins f and m are related to the developing and salinity response of post-germinating seeds of Pisum sativum. Plant Sci 188:82–88

    Article  PubMed  Google Scholar 

  • Fonsecapereira PD, Daloso DM, Gago J, Nunesnesi A, Araujo WL (2019) On the role of the plant mitochondrial thioredoxin system during abiotic stress. Plant Signal Behav 146:1559–2324

    Google Scholar 

  • Geigenberger P, Thormählen I, Daloso DM, Fernie AR (2017) The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci 22:249–262

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci CMLS 62:24–35

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HF (1993) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–69

    Google Scholar 

  • Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396:120–124

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharm 64:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, Eklund H, Rouhier N, Schurmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343

    Article  CAS  PubMed  Google Scholar 

  • Ji MG, Park HJ, Cha JY, Kim JA, Shin GI, Jeong SY, Lee ES, Yun DJ, Lee SY, Kim WY (2020) Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. Plant Physiol Biochem 147:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Qin T, Zhao Z (2019) Thioredoxins and thioredoxin reductase in chloroplasts: a review. Gene 706:32–42

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. J Plant Physiol 134:1006–1016

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radical Biol Med 66:75–87

    Article  CAS  Google Scholar 

  • Martí MC, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro JJ, Sevilla F, Jiménez A (2011) Response of mitochondrial thioredoxin PsTrx o 1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot 62:3863–3874

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C, Spoel SH (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33

    Article  PubMed  Google Scholar 

  • Meng Z, Zhao Y, Liu L, Du X (2021) Genome-wide characterization of the PDI gene family in Medicago truncatula and their roles in response to endoplasmic reticulum stress. Genome 64:599–614

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P (2021) Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. Plant, Cell Environ 44:1417–1435

    Article  CAS  Google Scholar 

  • Nikkanen L, Toivola J, Diaz MG, Rintamäki E (2017) Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans Royal Soc b: Biological Sci 372:20160474

    Article  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys Res Commun 423:417–423

    Article  CAS  PubMed  Google Scholar 

  • Ojeda V, Pérez-Ruiz JM, González M, Nájera VA, Sahrawy M, Serrato AJ, Geigenberger P, Cejudo FJ (2017) NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiol 174(3):1436–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A (2017) Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. J Exp Bot 68:1025–1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Yong LS, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun D-J, Lee KO, Yeol LS (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J Exp Bot 61:4043–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renard M, Alkhalfioui F, Schmitt-Keichinger C, Ritzenthaler C, Montrichard F (2011) Identification and characterization of thioredoxin h isoforms differentially expressed in germinating seeds of the model legume Medicago truncatula. Plant Physiol 155:1113–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey P, Cuiné S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Guerrero A, Nadal M, Florez-Sarasa I, Ribas-Carbó M, Vallarino JG, Brasi-Velasco D, Fernie AR, Flexas J, Jiménez A, Sevilla F (2021) Decreased levels of Thioredoxin o1 influences stomatal development and aperture but not Photosynthesis under non-stress and saline conditions. Int J Mol Sci 22:1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-Like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60:229–237

    Article  CAS  PubMed  Google Scholar 

  • Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  PubMed  Google Scholar 

  • Schürmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Biol 51:371–400

    Article  Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399

    Article  CAS  PubMed  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66:2945–2955

    Article  CAS  PubMed  Google Scholar 

  • Song J, Mo X, Yang H, Yue L, Song J, Mo B (2017) The U-box family genes in Medicago truncatula: key elements in response to salt, cold, and drought stresses. PLoS One 12:e0182402

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M (2011) Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus. Plant Physiol 156:1535–1547

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun N, Deng T, Zhang L, Zuo K (2014) Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genom 15:961–961

    Article  CAS  Google Scholar 

  • Wu F, Li Q, Yan H, Zhang D, Jiang G, Jiang Y, Duan X (2016) Characteristics of three thioredoxin genes and their role in chilling tolerance of harvested banana fruit. Int J Mol Sci 17:1526

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32060069), and the Natural Science Foundation of Jiangxi Province (No. 20202BABL205023 and No. 20212ACB215004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Li or Jianbo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Additional information

Communicated by J. Kovacik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhou, Y., Cheng, J. et al. Identification of thioredoxin genes and analysis of their expression under abiotic stresses in Medicago truncatula. Acta Physiol Plant 44, 120 (2022). https://doi.org/10.1007/s11738-022-03459-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-022-03459-7

Keywords

Navigation