Skip to main content
Log in

Allelopathic interactions of invasive black locust (Robinia pseudoacacia L.) with secondary aliens: the physiological background

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Despite of numerous benefits, black locust (Robinia pseudoacacia L.) is an invasive tree species in Slovakia and Hungary. Recently, secondary local invasions of black locust plantations by black cherry (Prunus serotina Ehrh.) and common hackberry (Celtis occidentalis L.) have been observed in these countries. In this study, we describe these unique tree-to-tree interactions directly in the field as well as simulated in the laboratory (1% water extracts from leaves and twigs applied on leaf and soil). In the field, we observed no effect on tree height and trunk diameter as well as leaf metabolic parameters caused by black cherry. However, the laboratory experiment showed a reduction in nodulation, and thus N fixation rate per plant, which did not mirror in the shoot and root dry matter (DM) production. On the other hand, common hackberry significantly affected tree height as well as leaf amino acid and total nitrogen concentration, but not the content of soluble sugars and hydrogen peroxide in the field. The laboratory experiment revealed significant reductions in nodulation, N fixation rate per plant, shoot and root DM and leaf hydrogen peroxide, nevertheless, a noticeable soluble protein accumulation. Thus, we can conclude that common hackberry, but not black cherry, can effectively suppress black locust N metabolism and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Wakeel SAM, Gabr MA, Hamid AA, Abu-El-Soud WM (2007) Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath J 19(2):411–422

    Google Scholar 

  • Annighöfer P, Mölder I, Zerbe S, Kawaletz H, Terwei A, Ammer C (2012) Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forest of Northern Italy. Eur J Forest Res 131:1619–1635

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Env 32:666–681

    CAS  Google Scholar 

  • Bao Z, Nilsen ET (2015) Interactions of seedlings of the invasive tree Ailanthus altissima and the native tree Robinia pseudoacacia under low nutrient conditions. J Plant Interact 10(1):173–184

    CAS  Google Scholar 

  • Bartha D, Csiszár A, Vince Z (2008) Black locust (Robinia pseudoacacia L.). In: Botta-Dukát Z, Balogh L (eds) The most important invasive plants in Hungary. Institute of Botany and Ecology HAS, Hungary, pp 63–76

    Google Scholar 

  • Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by Chenopodium murale affect growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Reg 51:119–128

    CAS  Google Scholar 

  • Benčať F (1982) Atlas rozšírenia cudzokrajných drevín na Slovensku [Atlas of exotic tree species spreading in Slovakia]. Veda, Bratislava

    Google Scholar 

  • Benčaťová B, Benčať T (2008) The black locust communities from Slovak Gate to Danube. Thaiszia 18(1):3–7

    Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationship between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32(8):1818–1834

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Call LJ, Nilsen ET (2005) Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol 176:275–285

    Google Scholar 

  • Cao B, Song L-H, Zhang T-T (2009) Allelopathic effects of solution extracted from soil around Ailanthus altissima root zone on germination of Robinia pseudoacacia seeds. J Nanjing For Univ 33(3):51–54

    CAS  Google Scholar 

  • Chabrerie O, Loinard J, Perrin S, Saguez R, Decocq G (2010) Impact of Prunus serotina invasion on understory functional diversity in a European forest. Biol Invasions 12:1891–1907

    Google Scholar 

  • Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303

    CAS  PubMed  Google Scholar 

  • Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British isles: Robinia pseudoacacia. J Ecol 101:1323–1640

    Google Scholar 

  • Cornelissen JHC, Sibma F, Van Logtestijn RSP, Broekman RA, Thompson K (2011) Leaf pH as a plant trait: species-driven rather than soil-driven variation. Funct Ecol 25:449–455

    Google Scholar 

  • De Marco A, Arena C, Giordano M, Virzo De Santo A (2013) Impact of the invasive tree black locust on soil properties of Mediterranean stone pine-holm oak forests. Plant Soil 372:473–486

    Google Scholar 

  • Einhellig EA (2004) Mode of allelochemical action of phenolic compounds. In: Macías FA et al (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Florida, pp 217–238

    Google Scholar 

  • El-Alfy N, El-Gohary HMA, Sokkar NM, Hosny M, Al-Mahdy DA (2011) A new flavonoid C-glycoside from Celtis australis L. and Celtis occidentalis L. leaves and potential antioxidant and cytotoxic activities. Sci Pharm 79:963–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol. 3:577–591

    CAS  Google Scholar 

  • Fipps G (2003) Irrigation water quality standards and salinity management. Agri Life Extension, Texas A&M System, B-1667

  • Fournier E (2001) Colorimetric quantification of carbohydrates. Curr Prot Food Anal Chem E1.1.1–E1.1.8

  • Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediated sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol 26:517–525

    CAS  PubMed  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology and phenotypic plasticity. Annu Rev Plant Biol 65:155–185

    CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen signaling and communication in plants. Signalling and communication in plants 23. Springer, New York, pp 155–176

    Google Scholar 

  • Godefroid S, Phartyal SS, Weyembergh G, Koedam N (2005) Ecological factors controlling the abundance of non-native invasive black cherry (Prunus serotina) in deciduous forest understory in Belgium. For Ecol Manag 210:91–105

    Google Scholar 

  • Haig T (2008) Allelochemicals in plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104

    Google Scholar 

  • Halarewicz A, Zolnierz L (2014) Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.). For Ecol Manag 313:91–97

    Google Scholar 

  • Hammash D, Kitaz A, Sabbagh G (2016) Total phenolic content, flavonoid concentration and antioxidant activity of leaves and bark extracts of Celtis australis L. Int J Pharm Sci Nanotech 9:3188–3192

    CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagodziński AM, Dyderski MK, Rawlik M, Banaszczak P (2015) Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. invasion–Evidence from a Rogów Arboretum case study. Forest Ecol Manag 357:84–94

    Google Scholar 

  • Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia. Hungary For Ecol Manag 6(3):217–244

    Google Scholar 

  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. [New method for the determination of nitrogen in organic substances.]. Zeitschrift für analytische Chemie 22(1):366–383

    Google Scholar 

  • Knipp M, Vašák M (2000) A colorimetric 96-well microtiter plate assay for determination of enzymatically formed citrulline. Anal Biochem 286:257–264

    CAS  PubMed  Google Scholar 

  • Krykunets VM (1993) Acetylene reduction method in researches on physiology of legume-Rhizobium symbiosis. Physiol Biochem Cult Plants 25:419–430

    Google Scholar 

  • Li HH, Inove M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and ascorbic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    CAS  PubMed  Google Scholar 

  • Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodhi MAK (1975) Allelopathic efects of hackberry in bottomland forest community. J Chem Ecol 1(2):171–182

    CAS  Google Scholar 

  • Lodhi MAK, Nickell GL (1973) Effects of leaf extracts of Celtis laevigata on growth, water content, and carbon dioxide exchange rates of three grass species. Bull Torrey Bot Club 100(3):159–165

    CAS  Google Scholar 

  • Lodhi MAK, Rice EL (1971) Allelopathic efects of Celtis laevigata. Bull Torrey Bot Club 98(2):83–89

    Google Scholar 

  • Lotina-Hennsen B, King-Diaz B, Aguilar MI, Hernandez Terrones MG (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, Gonzáles L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 229–265

    Google Scholar 

  • Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309

    Google Scholar 

  • Mierziak J, Kosty K, Kulma A (2014) Flavonoids as important molecules of plant interactions with environment. Molecules 19:16240–16265

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    CAS  Google Scholar 

  • Nasir H, Iqbal Z, Hiradate S, Fujii Y (2005) Allelopathic potential of Robinia pseudoacacia L. J Chem Ecol 31(9):2179. https://doi.org/10.1007/s10886-005-6084-5

    Article  CAS  PubMed  Google Scholar 

  • Olszewska M (2007) Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and inflorescence of Prunus serotina Ehrh. Acta Chrom 19:253–269

    CAS  Google Scholar 

  • Oravec M (2008) Production capability of robinia stands from the viewpoint of production of fuel dendromass. Forestry J 54(2):155–165

    Google Scholar 

  • Park YK, Koo MH, Ikegati M, Contado JL (1997) Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq Biol Tecnol 40:97–106

    CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB PLANTS. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Procházková S, Vårum KM, Østgaard K (1999) Quantitative determination of chitosans by ninhydrin. Carbohyd Polym 38:115–122

    Google Scholar 

  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lign Hungary 4:127–132

    Google Scholar 

  • Robakowski P, Bielinis E, Stachowiak J, Mejza I, Bułaj B (2016) Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea. J Chem Ecol 42:202–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11(5):316–321

    Google Scholar 

  • Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvment of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK et al (2011) Characterization of Rhizobium isolated from root nodules of Trifolium alexandrinum. J Agric Tech 7(6):1705–1723

    Google Scholar 

  • Šiška B, Špánik F, Repa Š, Gálik M (2005) Practical bio-meteorology. [Praktická biometeorológia]. Slovenská poľnohospodárska univerzita, Nitra

  • Sitzia T, Campagnaro T, Dainese M, Cierjacks A (2012) Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manag 285:85–91

    Google Scholar 

  • Slavík B (1965) Metody studia vodního provozu rostlin. [Methods in the Plant Relations Study.] Nakladatelství ČSAV, Praha

  • Sommavilla V, Haidacher-Gasser D, Sgarbossa M, Zodorn C (2012) Seasonal variation in phenolics in leaves of Celtis australis (Cannabaceae). Biochem Syst Ecol 41:110–114

    CAS  Google Scholar 

  • Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crop Res 65(2–3):183–196

    Google Scholar 

  • Surleva A, Drochioiu G (2013) A modified ninhydrin micro-assay for determination of total cyanogens in plants. Food Chem 141:2788–2794

    CAS  PubMed  Google Scholar 

  • Swain E, Poulton JE (1994) Utilization of amygdalin during seedling development of Prunus serotina. Plant Physiol 106:437–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C et al (2003) Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests 25(2):125–131

    Google Scholar 

  • Török K, Botta-Dukát Z, Dancza I, Németh I, Kiss J, Mihály B, Magyar D (2003) Invasion gateways and corridors in the Carpathian Basin: biological invasions in Hungary. Biol Invasions 5:349–356

    Google Scholar 

  • Ubalua AO (2010) Cyanogenic glycosides and the fate of cyanide in soil. AJCS 4:223–237

    CAS  Google Scholar 

  • ÚKZÚZ (2013) Spectrophotometric determination of tannins in sorghum. [Stanovení obsahu taninů v čiroku spektrofotometricky]. ÚKZÚZ, Praha

    Google Scholar 

  • Vanhellemont M, Wauters L, Baeten L, Bijlsma R-J, De Frenne P, Hermy M, Verheyen K (2009) Prunus serotina unleasehed: invader dominance after 70 years of forest development. Invasions, Biol. https://doi.org/10.1007/s10530-009-9529-x

    Book  Google Scholar 

  • Vetter J (2000) Plant cynogenic glycosides. Toxicon 38:11–36

    CAS  PubMed  Google Scholar 

  • Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manag 284:287–302

    Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    CAS  PubMed  Google Scholar 

  • Zanardo DIL, Lima RB, Ferrarese ML, Burna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Env Exp Bot 66(1):25–30

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Cooperation in Science and Technology’s project COST action TD1209. Special thanks to Dr. Ján Kukla, Dr. Margita Kuklová (Institute of Forest Ecology SAS) and Dr. Michaela Havrlentová (Research Institute of Plant Production, National Agricultural and Food Centre) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ferus.

Additional information

Communicated by M. J. Reigosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferus, P., Bošiaková, D., Konôpková, J. et al. Allelopathic interactions of invasive black locust (Robinia pseudoacacia L.) with secondary aliens: the physiological background . Acta Physiol Plant 41, 182 (2019). https://doi.org/10.1007/s11738-019-2974-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2974-y

Keywords

Navigation